Introduction

The first usage of algae for wastewater treatment was reported in 1966, but recently there is a growing interest on using wastewater and microalgae for biofuel production (DOE, 2018).

- **High-Rate Algal Ponds (HRAPs)** are an engineering design for Maximum algal biomass production
- **Biomass Yield (BY)** Calculation: Direct Microalga (g/m²/day)
- **Life Cycle Assessment (LCA),** a technique to assess environmental impacts associated with all the stages of a product’s life, is used in this research.
- Previous LCA studies only focused on a single site with generalized assumptions, without systematic consideration of geographic diversity, seasonal climate variation, and resource availability.

Objectives & Significance

Some of the main objectives are:

- Evaluate the Potential of Wastewater Algal Biofuel as Point-by-Point Analysis in the National Scale
- Develop a High-Resolution-Spatially-Explicit Life Cycle Assessment (HRSE-LCA) model

The significance of this research are:

- Evaluate seasonal and geographic variations in environmental impacts of wastewater-based algal biofuels
- Introduce a methodology that could be used for spatially explicit analysis of algal biofuel integrated with wastewater on macro-scale in any other regions as well

Results

- No Energy Efficiency on scenario 1

Discussion

A comprehensive analysis of algae cultivation was performed in this research. The results indicate that using wastewater for algae cultivation is both economically and environmentally promising for 42% of total biofuel capacity in the US.

- Hydrothermal liquefaction is the most promising scenario.
- Yearly production of bio crude oil in wastewater is around 0.5 billion gallon, about 0.8% of total crude oil and 5% of biofuels produced in the US.
- This result indicates that land availability or land use efficiency are limiting factors for algal cultivation that have not been considered in previous studies.
- To understand the full potential of algal biofuel, future research should be done to investigate the potential of algal biofuel with other resources including sea water and brackish water.

References

7. Data from USGS and NOVA and NREL.