Weight, $W=m g$
Where $\mathrm{m}=$ mass, $\mathrm{g}=$ gravitational acceleration
Density, $\rho=\frac{m}{W}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)$
Where $m=$ mass, $\forall=$ Volume
Specific volume, $v=\frac{\forall}{m}=\frac{1}{\rho} \quad\left(\frac{m^{3}}{k g}\right)$
Specific gravity, $S G=\frac{\rho}{\rho_{\mathrm{H}_{2} \mathrm{O}}}$
Where $\rho_{\mathrm{H} 2 \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

$$
P_{\text {gage }}=P_{A b s}-P_{a t m} \quad P_{v a c}=P_{a t m}-P_{a b s}
$$

Variation of pressure with depth: Apply between two points in the same fluid. Where "below" refers to point at lower elevation and "above" at higher elevation

$$
P_{\text {below }}=P_{\text {above }}+\rho g|\Delta z|
$$

The absolute and gage pressures in a liquid open to the atmosphere at a depth of h from the free surface are:

$$
P=P_{a t m}+\rho g h \quad P_{\text {gage }}=\rho g h
$$

Kinetic Energy
Where m=mass,
$K E=m \frac{V^{2}}{2}$
$k e=\frac{V^{2}}{2} \quad\left(\frac{k J}{k g}\right)$
$\mathrm{V}=$ velocity
Potential Energy:

$$
P E=m g z
$$

(kJ)

$$
p e=g z \quad\left(\frac{k J}{k g}\right)
$$

Where $\mathrm{m}=$ mass, $\mathrm{g}=$ gravitational acceleration, $\mathrm{z}=$ elevation

SPECIFIC HEAT RELATIONS FOR IDEAL GAS:

$$
\begin{array}{ll}
c_{v}=\left(\frac{\delta u}{\delta T}\right)_{v} & \Delta u=u_{2}-u_{1}=\int_{1}^{2} c_{v}(T) d T \\
c_{p}=\left(\frac{\delta h}{\delta T}\right)_{p} & \Delta h=h_{2}-h_{1}=\int_{1}^{2} c_{p}(T) d T
\end{array}
$$

Variation of spec. heats with T is smooth and may be approx. as linear over small T interval. Can replace specific heat with $\mathrm{C}_{\text {avg }}$, yielding:

$$
\begin{aligned}
& u_{2}-u_{1}=c_{v, a v g}\left(T_{2}-T_{1}\right), \quad h_{2}-h_{1}=c_{p, a v g}\left(T_{2}-T_{1}\right) \\
& c_{p}=c_{v}+R\left(\frac{k J}{k g K}\right), \quad k-\frac{c_{p}}{c_{v}}
\end{aligned}
$$

Electrical Work:

$$
\begin{align*}
& \text { When N Coulombs of electrical charge } \\
& \text { move through a potential difference } \mathrm{V}
\end{align*} \quad W_{e}=V N \quad \text { In the rate form, } \quad \dot{W}_{e}=V I=I^{2} R=\frac{V^{2}}{R}
$$

Electrical work done during a time interval Δt :

$$
\begin{equation*}
W_{e}=\int_{1}^{2} V I d t \tag{kJ}
\end{equation*}
$$

Where \dot{W}_{e} is the electrical power and I is the current.

Or when V and I remain constant during interval $\Delta \mathrm{t}$:

$$
\begin{equation*}
W_{e}=V I \Delta t \tag{kJ}
\end{equation*}
$$

Mechanical Forms of Work:

$$
\begin{align*}
W & =F s \tag{kJ}\\
W & =\int_{1}^{2} F d s \tag{kJ}
\end{align*}
$$

Work done by a constant force, F on a body displaced a distance s

Shaft Work: $\quad \dot{W}_{s h}=2 \pi \dot{n} T$
($k W$)
Where \dot{n} is the number of revolutions per unit time
Spring Work: $\quad W_{\text {spring }}=\frac{1}{2} k\left(x_{2}{ }^{2}-x_{1}{ }^{2}\right)$
Where x_{1} and x_{2} are the initial and final displacements of the spring.

Boundary Work:
 $$
\begin{equation*} W_{b}=\int_{1}^{2} P d v \tag{kJ} \end{equation*}
$$

Constant P process: $W_{b}=P\left(V_{2}-V_{1}\right)$
Polytropic process: $W_{b}=\frac{P_{2} \bigvee_{2}-P_{1} \bigvee_{1}}{1-n}$
Polytropic Ideal Gas $\quad W_{b}=\frac{m R\left(T_{2}-T_{1}\right)}{1-n}$
process:

Polytropic Isothermal $W_{b}=P V \ln \left(\frac{\bigvee_{2}}{\bigvee_{1}}\right)=m R T_{o} \ln \left(\frac{\bigvee_{2}}{\bigvee_{1}}\right)$
Ideal Gas process:

During actual exp/comp process of gases, P and \forall are related by $\mathrm{P} \forall^{\mathrm{n}}=\mathrm{C}$. Where n and C are constants therefore between 2 states, ideal gas, closed

$$
C=P_{1} \forall_{1}=P_{2} \forall_{2}=\mathrm{mR} T_{0} \quad \therefore\left(\frac{\forall_{2}}{V_{1}}\right)=\left(\frac{P_{2}}{P_{1}}\right)
$$

INTERNAL ENERGY, ENTHALPY \& SPECIFIC HEATS OF SOLIDS \& LIQUIDS

For an incompressible substance: $c_{p}=c_{v}=c$

$$
\begin{aligned}
& \Delta u=u_{2}-u_{1}=c_{a v g}\left(T_{2}-T_{1}\right) \quad\left(\frac{k J}{k g}\right) \\
& \Delta h=\Delta u+v \Delta P \cong c_{a v g}\left(T_{2}-T_{1}\right)+v \Delta P \quad\left(\frac{k J}{k g}\right)
\end{aligned}
$$

P-v Diagram

SUPERHEATED STATE

Region to the right of sat vap line \& at a T above $\mathrm{T}_{\text {cr }}$
To determine if S.H.

$$
\begin{aligned}
& \mathrm{P}<\mathrm{P}_{\text {sat }} \text { at given } \mathrm{T} \quad \text { Quality, } x=1 \\
& \mathrm{~T}>\mathrm{T}_{\text {sat }} \text { at given } \mathrm{P} \\
& \mathrm{v}>\mathrm{v}_{\mathrm{g}} \text { at given } \mathrm{P} \text { or } \mathrm{T} \\
& \mathrm{u}>\mathrm{u}_{\mathrm{g}} \text { at given } \mathrm{P} \text { or } \mathrm{T} \\
& \mathrm{~h}>\mathrm{h}_{\mathrm{g}} \text { at given } \mathrm{P} \text { or } \mathrm{T} \\
& \mathrm{~s}>\mathrm{s}_{\mathrm{g}} \text { at given } \mathrm{P} \text { or } \mathrm{T}
\end{aligned}
$$

T-v Diagram

SATURATED LIQUID-VAPOR MIXTURE STATE

Region under the dome

To determine the proportion of liquid and vapor phases in the mixture, find quality, x

$$
x=\frac{m_{\text {vapor }}}{m_{\text {total }}}
$$

$m_{\text {total }}=m_{\text {liq }}+m_{\text {vap }}=m_{f}+m_{g}$
Quality, $0<x<1$
To find $\mathrm{v}, \mathrm{h}, \mathrm{u}, \mathrm{s}$ at state 1.
Where y is $\mathrm{v}, \mathrm{u}, \mathrm{s}$ or h

$$
y_{1}=y_{f}+x\left(y_{g}-y_{f}\right)
$$

To determine if Sat Liq-vap Mixture.

$$
\begin{aligned}
& v_{f} \leq v \leq v_{g} \\
& u_{f} \leq u \leq u_{g} \\
& h_{f} \leq h \leq h_{g} \\
& s_{f} \leq s \leq s_{g}
\end{aligned}
$$

IDEAL RANKINE CYCLE: The ideal cycle for vapor power cycles

1-2 Isentropic compression in a pump
2-3 Constant pressure heat addition in a boiler
3-4 Isentropic expansion in a turbine
4-1 Constant pressure heat rejection in a condenser

IDEAL REHEAT RANKINE CYCLE: The ideal cycle for vapor power cycles

$$
\begin{gathered}
q_{\text {in }}=q_{\text {primary }}+q_{\text {reheat }}=\left(h_{3}-h_{2}\right)+\left(h_{5}-h_{4}\right) \\
w_{\text {turb,out }}=w_{\text {turb,I }}+w_{\text {turb,II }}=\left(h_{3}-h_{4}\right)+\left(h_{5}-h_{6}\right)
\end{gathered}
$$

Thermal Efficiency of HE, $\eta_{\text {th }}$

$$
\eta_{t h}=\frac{W_{\text {net }, \text { out }}}{Q_{\text {in }}}=1-\frac{Q_{\text {out }}}{Q_{\text {in }}}
$$

$$
W_{\text {net }, \text { out }}=Q_{\text {in }}-Q_{\text {out }}
$$

HEAT PUMP: The objective of a HP is to keep a warm space warm

Warm heated space $\text { at } T_{H}>T_{L}$	Coefficient of Performance for HP, $\mathrm{COP}_{\mathrm{HP}}$
	$C O P_{H P}=\frac{\text { Desired output }}{\text { Required input }}=\frac{Q_{H}}{W_{n e t, i n}}$
	$C O P_{H P}=\frac{Q_{H}}{Q_{H}-Q_{L}}=\frac{1}{1-Q_{L} / Q_{H}}$
$\underset{\text { Cold environment }}{\text { at } T_{1}}$	$C O P_{H P}=C O P_{R}+1$

REFRIGERATOR: The objective of a Refrigerator is to keep a cold space cold

$\eta_{t h}\left\{\begin{array}{l}<\eta_{t h, R E V} \\ =\eta_{t h, R E V} \\ >\eta_{t h, R E V}\end{array}\right.$

Irreversible HE

Reversible HE
Impossible HE

ENERGY BALANCE: CLOSED SYSTEM
$\Delta E_{\text {sys }}=E_{\text {in }}-E_{\text {out }}$
$\Delta U+\Delta K E+\triangle P E=E_{\text {in }}-E_{\text {out }}$ OSED SYSTEM Step 1: Define system of interest and simplify E-bal.
Step 2: If Stationary then $\Delta \mathrm{KE}=\Delta \mathrm{PE}=0$
Step 3: Determine if have $Q_{\text {in }}$ or $Q_{\text {out }}$ if Adiabatic $\Delta \mathrm{Q}=0$ Step 4: Determine if have $\mathrm{W}_{\mathrm{b}}, \mathrm{W}_{\text {paddle, }}, \mathrm{W}_{\text {electrical }}$

Expanding both the left and right side of the equation:
$\mathrm{m}\left(u_{2}-u_{1}\right)+\frac{1}{2} m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right)=\left(Q_{i n}+W_{\text {in }}\right)-\left(Q_{o u t}+W_{o u t}\right)$

ENERGY BALANCE: OPEN SYSTEM, STEADY STATE

$$
\Delta E_{\text {sys }}=E_{\text {in }}-E_{\text {out }} \quad \text { Since } \Delta \mathrm{E}_{\text {sys }}=0 \text { for } \mathrm{SS} \quad 0=E_{\text {in }}-E_{\text {out }}
$$

Expanding the equation:
$Q_{\text {in }}+W_{\text {in }}+\sum_{\text {in }} m\left(h+\frac{V^{2}}{2}+g z\right)=Q_{o u t}+W_{\text {out }}+\sum_{\text {in }} m\left(h+\frac{V^{2}}{2}+g z\right)$

MASS BALANCE: OPEN SYSTEM, STEADY STATE

$$
\Delta m_{s y s}=\sum_{i n} m-\sum_{o u t} m
$$

$$
\text { mass flow rate }, \dot{m}=\rho V A
$$

Volumetric flow rate, $\dot{V}=V A=\dot{m} / \rho$
Since $\Delta \mathrm{m}_{\text {sys }}=0$ for SS
For Steady, incompressible flow:

$$
0=\sum_{i n} m-\sum_{o u t} m
$$

CARNOT REFRIGERATOR

$$
\operatorname{COP}_{R, R E V}=\frac{1}{T_{L} / T_{H}-1}
$$

$$
\sum_{i n} \dot{\forall}=\sum_{o u t} \dot{\forall}
$$

CARNOT REFIGERATION CYCLE

ENERGY BALANCE: OPEN SYSTEM, UNSTEADY-FLOW

$$
\begin{aligned}
& \Delta E_{\text {sys }}=E_{\text {in }}-E_{\text {out }} \\
& \Delta U+\Delta K E+\Delta P E=E_{\text {in }}-E_{\text {out }}
\end{aligned}
$$

Expanding the equation:
$\Delta U+\Delta K E+\Delta P E=Q_{\text {in }}+W_{\text {in }}+\sum_{\text {in }} m\left(h+\frac{V^{2}}{2}+g z\right)-\left(Q_{o u t}+W_{o u t}+\sum_{i n} m\left(h+\frac{V^{2}}{2}+g z\right)\right)$
MASS BALANCE: OPEN SYSTEM, UNSTEADY-FLOW

$$
\Delta m_{s y s}=\sum_{\text {in }} m-\sum_{\text {out }} m \quad \longrightarrow \quad\left(m_{2}-m_{1}\right)=\sum_{\text {in }} m-\sum_{\text {out }} m
$$

CARNOT HEAT ENGINE:

CARNOT HEAT PUMP:

$$
C O P_{H P, R E V}=\frac{1}{1-T_{L} / T_{H}}
$$

$$
\left(\frac{Q_{H}}{Q_{L}}\right)_{R E V}=\frac{T_{L}}{T_{H}}
$$

$$
d S=\left(\frac{\delta Q}{T}\right)_{I N T R E V} \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~K}}\right)
$$

FIND THE CHANGE IN ENTROPY:

$$
\Delta S=S_{2}-S_{1}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{I N T ~ R E V}
$$

$$
\left(\frac{\mathrm{kJ}}{\mathrm{~K}}\right)
$$

INTERNALLY REVERSIBLE

ISOTHERMAL HEAT TRANSFER :
$\Delta S=\frac{Q}{T_{O}} \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~K}}\right)$
INCREASE OF ENTROPY PRINCIPLE:
$\Delta S_{S Y S}=S_{2}-S_{1}=\int_{1}^{2} \frac{\delta Q}{T}+S_{g e n}$
$S_{\text {gen }}\left\{\begin{array}{c}>0 \\ =0 \text { Irreversible } \\ <0 \text { Imposersible }\end{array}\right.$

ISENTROPIC PROCESS:

A internally reversible, adiabatic process
$\Delta S=0$ or $S_{2}=S_{1} \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)$
ENTROPY CHANGE OF LIQUIDS AND SOLIDS:
$S_{2}-S_{1}=\int_{1}^{2} c(T) \frac{d T}{T} \cong c_{a v g} \ln \frac{T_{2}}{T_{1}} \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)$
Where $\mathrm{c}_{\text {avg }}$ is the average specific heat of the substance over the given temperature interval

SPECIAL CASE: ISENTROPIC LIQUIDS \& SOLIDS
$S_{2}-S_{1}=c_{a v g} \ln \frac{T_{2}}{T_{1}}=0 \longrightarrow \quad T_{1}=T_{2}$

ISENTROPIC EFFICIENCIES OF STEADY-FLOW DEVICES

TURBINE

$$
\eta_{T}=\frac{\text { Actual Turbine Work }}{\text { Isentropic Turbine Work }}=\frac{w_{a}}{w_{S}} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}
$$

NOZZLE
$\eta_{N}=\frac{\text { Actual } K E \text { a nozzle exit }}{\text { Isentropic } K E \text { at nozzle exit }}=\frac{V^{2}{ }_{2 a}}{V^{2}{ }_{2 S}}=\frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}$ COMPRESSOR

$$
\eta_{T}=\frac{\text { Isentropic Compressor Work }}{\text { Actual Compressor Work }}=\frac{w_{s}}{w_{a}} \cong \frac{h_{2 s}-h_{1}}{h_{2 a}-h_{1}}
$$

PUMP

$$
\eta_{P}=\frac{w_{s}}{w_{a}}=\frac{v\left(P_{2}-P_{1}\right)}{h_{2 a}-h_{1}}
$$

ENTROPY CHANGE OF IDEAL GAS:CONSTANT SPECIFIC HEAT

 (Approximate Analysis: for when ΔT is small $<300^{\circ}$)$$
\begin{array}{ll}
S_{2}-S_{1}=c_{v, a v g} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{v_{2}}{v_{1}} & \left(\frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right) \\
S_{2}-S_{1}=c_{p, a v g} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}} & \left(\frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)
\end{array}
$$

ISENTROPIC PROCESS OF IDEAL GAS: CONSTANT SPECIFIC HEAT

$$
\begin{array}{ll}
\left(\frac{T_{2}}{T_{1}}\right)_{S=C O N S T} & =\left(\frac{v_{2}}{v_{1}}\right)^{k-1} \quad R / c_{v}=k-1 \\
\left(\frac{T_{2}}{T_{1}}\right)_{S=C O N S T}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / K} \\
\left(\frac{P_{2}}{P_{1}}\right)_{S=C O N S T}=\left(\frac{v_{1}}{v_{2}}\right)^{k}
\end{array}
$$

GENERAL ENTROPY BALANCE

$$
\Delta S_{\text {sys }}=\underbrace{S_{\text {in }}-S_{\text {out }}}+S_{\text {gen }}
$$

Mechanisms of Entropy
Transfer $=\mathrm{Q}$ and m

ENTROPY BALANCE: OPEN SYSTEM

$\Delta S_{s y s}=S_{2}-S_{1}=\sum \frac{Q_{K}}{T_{K}}+\sum \dot{m}_{i} s_{i}-\sum \dot{m}_{e} s_{e}+S_{g e n}$
ENTROPY BALANCE: OPEN SYSTEM-STEADY FLOW
$0=\sum \frac{Q_{K}}{T_{K}}+\sum \dot{m}_{i} s_{i}-\sum \dot{m}_{e} s_{e}+S_{g e n}$

ENTROPY CHANGE OF IDEAL GAS: VARIABLE SPECIFIC HEAT

(Exact Analysis: for when ΔT is large \& specific heats vary non-linearly w/in T range)

$$
S_{2}-S_{1}=S_{2}^{\circ}-S_{1}^{\circ}-R \ln \frac{P_{2}}{P_{1}} \quad\left(\frac{\mathrm{~kJ}}{\mathrm{~kg} \mathrm{~K}}\right)
$$

ISENTROPIC PROCESS OF IDEAL GAS: VARIABLE SPECIFIC HEAT

$$
\begin{aligned}
& \left(\frac{P_{2}}{P_{1}}\right)_{S=C O N S T}=\left(\frac{P_{r 2}}{P_{r 1}}\right) \\
& \left(\frac{v_{2}}{v_{1}}\right)_{S=C O N S T}=\left(\frac{v_{r 2}}{v_{r 1}}\right)
\end{aligned}
$$

ENTROPY BALANCE: ADIABATIC CLOSED SYSTEM

$$
\Delta S_{s y s}=S_{g e n}
$$

ENTROPY BALANCE: ADIABATIC CLOSED SYSTEM AND SURROUNDINGS

$$
\begin{aligned}
& S_{\text {gen }}=\sum \Delta S=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \\
& \Delta S_{\text {sur }}=\frac{Q_{\text {surr }}}{T_{\text {surr }}}
\end{aligned}
$$

$$
\left(q_{\text {in }}-q_{\text {out }}\right)+\left(w_{\text {in }}-w_{\text {out }}\right)=h_{\text {exit }}-h_{\text {inlet }}
$$

$$
q_{\mathrm{in}}=u_{3}-u_{2}=c_{v}\left(T_{3}-T_{2}\right)
$$

$$
M E P=\frac{w_{\text {net }}}{v_{\max }-v_{\min }}
$$

$$
q_{\mathrm{out}}=u_{4}-u_{1}=c_{v}\left(T_{4}-T_{1}\right)
$$

$$
\eta_{\mathrm{th}, \mathrm{Oto}}=\frac{w_{\mathrm{net}}}{q_{\mathrm{in}}}=1-\frac{q_{\mathrm{out}}}{q_{\mathrm{in}}}=1-\frac{T_{4}-T_{1}}{T_{3}-T_{2}}=1-\frac{T_{1}\left(T_{4} / T_{1}-1\right)}{T_{2}\left(T_{3} / T_{2}-1\right)}
$$

$$
\frac{T_{1}}{T_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{k-1}=\left(\frac{V_{3}}{V_{4}}\right)^{k-1}=\frac{T_{4}}{T_{3}} \quad r=\frac{V_{\max }}{V_{\min }}=\frac{V_{1}}{V_{2}}=\frac{V_{1}}{V_{2}}
$$

DIESEL CYCLE:

Ideal cycle for compression ignition engines

(b) $T-s$ diagram

(a) P-vdiagram

AIR STANDARD ASSUMPTIONS:

1. The working fluid is air, which continuously circulates in a closed loop and always behaves as an ideal gas.
2. All the processes that make up the cycle are internally reversible
3. The combustion process is replaced by a heat addition process from an external source.
4. The exhaust process is replaced by a heat rejection process that restores the working fluid to its initial state.

COLD AIR STANDARD ASSUMPTION:

Air has constant specific heats whose values are determined at room temp (25C)

$$
\begin{aligned}
& q_{\text {in }}-w_{b, \text { out }}=u_{3}-u_{2} \rightarrow q_{\text {in }}=P_{2}\left(v_{3}-v_{2}\right)+\left(u_{3}-u_{2}\right) \\
& =h_{3}-h_{2}=c_{p}\left(T_{3}-T_{2}\right) \\
& -q_{\text {out }}=u_{1}-u_{4} \rightarrow q_{\text {out }}=u_{4}-u_{1}=c_{V}\left(T_{4}-T_{1}\right) \\
& \eta_{\text {th,Diesel }}=\frac{w_{\text {net }}}{q_{\text {in }}}=1-\frac{q_{\text {out }}}{q_{\text {in }}}=1-\frac{T_{4}-T_{1}}{k\left(T_{3}-T_{2}\right)}=1-\frac{T_{1}\left(T_{4} / T_{1}-1\right)}{k T_{2}\left(T_{3} / T_{2}-1\right)} \\
& \eta_{\mathrm{th}, \text { Diesel }}=1-\frac{1}{r^{k-1}}\left[\frac{r_{c}^{k}-1}{k\left(r_{c}-1\right)}\right] \\
& r_{c}=\frac{V_{3}}{V_{2}}=\frac{V_{3}}{V_{2}}
\end{aligned}
$$

