Opportunity and Significance

- The overwhelming need for, and clinical interest in, noninvasive diagnostic procedures
- Single modalities alone can only provide a limited amount of information
- A dual-modality system would allow for enhancements in noninvasive diagnostic procedures for tumor detection\(^1,2,3\)

Technical Objectives

- The development of a dual-modality imaging system that combines photoacoustic (PA) microscopy and fluorescence imaging (FI)
- To outline the enhancements to the both qualitative and diagnostic information available in the combined images from this system

Related Work and State of Practice

- The development of a unique laboratory setup for the project was designed and implemented
- Validation of the system, including image acquisition and data acquisition, in progress

Technical Approach, Accomplishments, and Results

- The combined system has been designed and is being optimized for dual image acquisition
- System is designed with external triggering to coordinate acquisition between PA and FI
- Validation of system requires FI image acquisition and PA image reconstruction

Next Steps for Development and Test

- Final validation and optimization of system function to enhance imaging capabilities
- Acquisition of biological samples or specimens to test diagnostic capabilities
- Enhance design for imaging biological systems

Commercialization Plan & Partners

- The research effort was done entirely at Wayne State’s Optical & Photoacoustic Imaging Research and Analysis Laboratory (OPIRA)
- We have connect with a physician from the Henry Ford Health System to develop a project for imaging nanoparticles in glioblastoma
- Limitations to research efforts are related to resources available for the laboratory

References

This project thanks the College of Engineering UROP for their award and support.