Real-Time Scheduling of Adaptive Variable Rate (AVR) Tasks for Engine Control

Control-Flow Level Techniques for Minimization of Cache-Related Preemption Delay for Sequential and Parallel Real-Time Tasks

Thermal Resilient Real-Time System Design

Autonomous Battery Operating System Design

Nathan Fisher
Associate Professor, Department of Computer Science
Real-Time and Embedded Systems

Task invoked at specific crank angle locations:
AVR–TASK(int rpm){ f1();
if (rpm < 3000){ f2 (); }
else if (rpm > 6000){ f3 () ;}
f4 () ;
}

Task Execution Time: dependent upon physical variable (e.g., RPM).

Task Deadline: crankshaft revolutions.

Control-Flow Level Techniques for Minimization of Cache-Related Preemption Delay for Sequential and Parallel Real-Time Tasks

Thermal Resilient Real-Time System Design

Autonomous Battery Operating System Design

Power Grid/Supplier
Device (EV)/User
External Environment/Threats

ABOS
Battery-Aware Routing/Charging
Threat/Fault Protection
Battery/User-Behavior Estimation

BMS
Physical Multi-Cell Battery

Battery-Aware
Routing/Charging
Threat/Fault
Protection
Battery/User-Behavior Estimation

Physical-Level
BMS
Modules
Monitoring
Cell Balancing
Charge/Discharge
...