Customer has requested: Electronic delivery: Yes

Victor Berdichevsky (aa1006)
2108 College of Engineering
Detroit, MI 48202

Request received 2/13/2015
Note:

Call #: Shelved as: Soviet physics, Doklady
Location: Sci and Eng Storage
Periodicals 1-37 [1956-1992]

Notice: This material may be protected under Copyright Law (Title 17 U.S. Code)
Mechanics of continuous media

A variational principle

V. L. Berdichevskii
M. V. Lomonosov Moscow State University
(Presented by Academician L. I. Sedov, September 20, 1973)
(Submitted July 31, 1973)

The investigation of the problem of the minimum of the functional $I(u)$ on a set M can be simplified if we know a functional $J(p)$, defined on some set N and such that

$$\sup_{p \in N} J(p) = \inf_{u \in M} I(u).$$

The functional $J(p)$ is enlisted, for example, to construct bounds for the error in the approximate solution.

Particularly effective is the use of the functional $J(p)$ when we seek not the minimizing element but the minimal value I_0 of the functional $I(u)$. Computation of the elements of $I(u)$ and $J(p)$ at any element $u \in M$ and $p \in N$ gives upper and lower bounds for I_0

$$J(p) \leq I_0 \leq I(u).$$

If, for some u, we can choose p such that $I(u)$ and $J(p)$ are close together, then $I_0 \approx I(u)$ and the error does not exceed $I(u) - J(p)$.

In this paper we indicate a method of constructing the functional $J(p)$ for a functional $I(u)$ of the form

$$I = E(u) - I(u^0),$$

$$E(u) = \int V U(z^i, u^i, \partial u^i/\partial x^i)dx,$$

$$I(u^0) = \int S F_u u^i dS;$$

where V is a region in the n-dimensional space of the variables $x^i, u^i(x^i)$ are differentiable functions of the x^i, Latin superscripts run through the values $1, \ldots, n$, Greek superscripts run through the values $1, \ldots, m$, the function U is convex and differentiable with respect to the variables u^i and $\partial u^i/\partial x^i$, the F_u are given functions of x^i in V, the hypersurface S is a part of the boundary ∂V of the region V, the F_u are given functions on S, and dS is an element of the surface of S.

We seek a minimum of the functional I on the functions u^i which take given values on the surface $\Sigma = \partial V - S$:

$$u^i = q^i \text{ on } \Sigma.$$ (4)

When E is a Dirichlet functional or a functional in the geometrically linear theory of elasticity, the variational principle formulated below goes over into the Thompson and the Castigliano principle respectively.

Consider the space H_u of functions $\{u^i(x^i), u^{i\alpha}(x^k)\}$ (the $u^{i\alpha}$ are $m \times n$ independent functions of the x^k) and the functional E, defined in H_u:

$$E = \int V U(x^i, u^i, u^{i\alpha})dx.$$ (5)

On the set $L \subset H_u$, consisting of elements of the form

$$\{u^\alpha, \partial u^\alpha/\partial x^i\},$$ the functional E coincides with the functional $E(u^\alpha)$. (2)

We introduce the H_p of functions $\{p_\alpha(x^k), p^{i\alpha}(x^k)\}$ and let $\langle p \cdot u \rangle$ denote the bilinear form

$$\langle p \cdot u \rangle = \int V (p_u u^i + p^{i\alpha} u^{i\alpha})dx.$$ (3)

In H_p the following functional is defined:

$$E'(p) = \sup_{u^0} (\langle p \cdot u \rangle - E),$$ (4)

which is Young's transformation of the functional E.

In H_p we also construct the linear functional $l'(p)$ defined by the equation

$$l'(p) = \langle p \cdot u^0 \rangle - I(u^0),$$

where $\langle p \cdot u^0 \rangle$ is the value of the bilinear form $\langle p \cdot u \rangle$ on the set L,

$$\langle p \cdot u^0 \rangle = \int V (p_u u^i + p^{i\alpha} u^{i\alpha}/\partial x^i)dx,$$

and the $u^{i\alpha}$ are functions taking the values (4) on Σ.

Let N denote the set in H_p defined by the constraints

$$\langle p \cdot u^0 \rangle - I(u^0) = 0,$$ (5)

where $u^{i\alpha}$ are arbitrary functions taking zero values on Σ.

Obviously the values of the linear functional $l'(p)$ on N are independent of the actual set of functions $u^{i\alpha}$.

Consider the problem of the maximum of the set N of the functional

$$I(p) = l'(p) - E'(p).$$ (6)

We shall assume that there are constraints on the U, F_u, f_α, c_α and the region V such that solutions of the variational problems (1)-(4), and (6), (7) exist and are unique (cf. refs. 3-6).

To prove that the maximum value I_0 of the functional I coincides with the minimum value I_0 of the functional I,

$$I_0 = J_0,$$ (8)

we require the following assertions:

1. Let u_0 be a fixed element of H_u and p_0 be the maximizing element of the functional

$$\langle p \cdot u_0 \rangle - E'(p).$$ (9)

Then the maximizing element of the functional

$$\langle p \cdot u \rangle - E$$ (10)

in the space H_u is u_0.

Copyright © 1974 American Institute of Physics
2. Put $u_0 = \{u_0^\alpha, \partial u_0^\alpha / \partial x^1\}$, where u_0^α is the minimizing element of the functional I (1). Then the corresponding element p_0 satisfies the constraints (6).

Indeed, differentiating (10) in the direction at the point u_0 and putting $u = \{u^\alpha, \partial u^\alpha / \partial x^1\}$, we obtain

$$\langle p_0, \langle u^\alpha \rangle - DE(u_0^\alpha, u^\alpha) = 0,$$

where $DE(u_0^\alpha, u^\alpha)$ is the derivative of the functional $E(u^\alpha)$ at the point u_0^α in the direction u^α. Using Euler's equation for the functional (1),

$$DE(u_0^\alpha, u^\alpha) - I(u^\alpha) = 0,$$

we obtain $\langle p_0, u^\alpha \rangle - I(u^\alpha) = 0$.

3. We have $E(u_0^\alpha) + E^*(p_0) = \langle p_0, u_0^\alpha \rangle$.

4. Differentiating the functional (9) at the point p_0 in the direction p', we obtain

$$\langle p', u^\alpha \rangle - DE^*(p_0, p') = 0.$$ \hspace{1cm} (11)

5. The element p_0 is a maximizing element of the functional J.

Indeed, by 2, $p_0 \in N$. Further, let p be an arbitrary element of N. Then p can be put in the form $p = p_0 + p'$, where

$$\langle p', u^\alpha \rangle = 0.$$ \hspace{1cm} (12)

We can show that $J(p) \leq J(p_0)$.

$$J(p) = J(p_0) + DE^*(p_0, p').$$

Using (11) and (12), we obtain

$$J(p) = J(p_0) + \langle p', u^\alpha \rangle - \langle p', u^\alpha \rangle = J(p_0).$$

Consequently, p_0 is a maximizing element of the functional $J(p)$.

Equation (8) follows from 1-5:

$$I_0 = J(p_0) - E(p_0) = \langle p_0, u^\alpha \rangle - I(u^\alpha) - \langle p_0, u^\alpha \rangle + E(u_0^\alpha) = I_0 + \langle p_0, u^\alpha \rangle - I(u^\alpha) = I_0.$$

Note 1. We define the functional

$$L(p, u) = \langle p, u^\alpha \rangle - E^*(p) - I(u^\alpha).$$

The following equations are obvious:

$$\inf_{p_0} \sup_{u_0} L(p_0, u_0) = \inf_{p} \sup_{u} J(p, u) = I_0,$$

$$\sup_{p_0} \inf_{u_0} L(p_0, u_0) = \sup_{p} J(p, u) = I_0.$$ \hspace{1cm} (13)

where inf is taken over all the u^α satisfying the conditions (4).

Thus, the minimax problem (13) is equivalent to the problem of the minimum of the functional I and its dual, the minimax problem (14), is equivalent to the problem of the maximum of the functional J.

Note 2. If the functions p_0^α are continuous and differentiable in the closed region V, the constraints (6) can be written as

$$\partial p_0^\alpha / \partial x^1 - p_0 + F = 0, \quad p_0^\alpha |_{S} = f_0;$$ \hspace{1cm} (15)

where the n_1 are the components of the external normal vector to S.

Note 3. If the function U is independent of the u^α, we have $E^*(p) = + \infty$ for $p_0 = 0$. Hence in seeking the maximum of J we have to put $p_0 = 0$. The functional $E^*(p)$, for $p_0 = 0$, is the Young's transformation of the functional E^* with respect to the variables u^α.

Example 1. Thompson's principle. Suppose V is the outside of a bounded region Ω in three-dimensional space and $E(u)$ is the Dirichlet functional,

$$E(u) = \int \frac{\partial u}{\partial x'} \frac{\partial u}{\partial x'} \, dx.$$

Consider the problem of the minimum of the functional $I = E(u)$ under the condition

$$u = 1 \text{ on } \partial V = \partial \Omega, \quad u(x) - c_1 / r + c_2 / r^2 + \ldots, \quad r = \sqrt{x'}.$$

The quantity $(2 \pi)^{-1} I_0$ is the electrostatic capacity of Ω.

We know that

$$I_0 = \sup_{p} \left(\int_{\partial V} p \cdot n \, da \right) / 2 \int_{\partial V} p \cdot p \, dx,$$

where sup is taken over the whole vector field p satisfying the equation

$$\partial p / \partial x^1 = 0.$$ \hspace{1cm} (18)

The variational problem (17), (18) is called Thompson's principle.

We can show that Thompson's principle follows from (7) and (8). In this case $S = 0, I(u) = 0, \Sigma = \partial V$. By Note 3, it is sufficient to consider certain fields p satisfying (18), where

$$E^*(p) = \int \frac{\partial p}{\partial x'} \frac{\partial p}{\partial x'} \, dx.$$

Choosing a function u which takes the boundary values (16), we obtain

$$I_0 = \sup_{p} \left(\int_{\partial V} p \cdot n \, da - \frac{1}{2} \int_{\partial V} p \cdot p \, dx \right).$$ \hspace{1cm} (19)

where sup is taken over vector fields p satisfying (18).

We write p as $p = \lambda p_0$, $\partial p_0 / \partial x^1 = 0$, where λ is an arbitrary number, and rewrite (19) as follows:

$$I_0 = \sup_{p_0} \sup_{\lambda} \left(\int_{\partial V} p_0 \cdot n \, da - \lambda^{-1} \int_{\partial V} p_0 \cdot p_0 \, dx \right).$$ \hspace{1cm} (20)

After calculating sup, (20) takes the form of Thompson's principle.

Example 2. Castigliano's principle. Consider the functionals of the geometrically linear theory of
elasticity \(m = n = 3 \), and so in what follows we use only Latin letters:

\[
E = \int_{\Omega} U(x', \varepsilon_0) \, dx, \quad \varepsilon_0 = \varepsilon_{ij}^{\varepsilon} \frac{\partial a_i}{\partial x^j} + \frac{\partial a_j}{\partial x^i}.
\]

By Note 3, it is sufficient to seek the maximum of the functional \(J \) in the space of functions \(p^{ij} \), while \(E^* \) can be assumed to be Young's transformation of the functional \(E \) with respect to the variables \(u_{ij} \). However, since \(E \) depends only on the symmetric part \(\varepsilon_{ij} \) of the tensor \(u_{ij} \), \(E^* = + \infty \) for \(p^{ij} \neq p^{ij} \). Consequently, in seeking the maximum of \(J \) we have to put \(p^{ij} = p^{ij} \). The functional \(E^* \) then coincides with Young's transformation of the functional \(E \) with respect to the variables \(\varepsilon_{ij} \).

If the functions \(p^{ij} \) are continuous and differentiable in the closed region \(V \), the expression for \(J \) and the constraints (6) can be rewritten as

\[
J = \int_V p^{ij} n_{ij} \, dx - \int_{\gamma} U(x', p^{ij}) \, dx,
\]

(21)

\[
\partial p^{ij} / \partial x^j + F^j = 0 \quad \text{in} \ V, \quad p^{ij} n_{ij} = f \quad \text{on} \ S;
\]

(22)

where \(U^*(x^i, p^{ij}) \) is Young's transformation of the function \(U(x^i, \varepsilon_{ij}) \) with respect to the variables \(\varepsilon_{ij} \). The variational principle (21), (22) is known as Castigliano's principle.9

Note 4. The usual formulation of the principle (21), (22) is much more restricted than the formulation (6), (7) since it assumes that the functions \(p^{ij} \) are continuous and differentiable. Indeed, the maximum of \(J \) can be discussed over any summable functions \(p^{ij} \) (their values on sets of measure zero, in particular, on \(S \) and \(\Sigma \), are not defined).

9O. A. Ladzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations [in Russian], Moscow (1964).

9E. G. Gol'dshtein, Duality Theory in Mathematical Programming and Its Applications [in Russian], Moscow (1971).
