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Abstract

Optimization of power networks is a rich research area that focuses mainly on efficiently gener-
ating and distributing the right amount of power to meet demand requirements across various
geographically dispersed regions. The Unit Commitment (UC) problem is one of the critical
problems in power network research that involves determining the amount of power that must
be produced by each generator in the power network subject to numerous operational con-
straints. Growth of these networks coupled with increased interconnectivity and cybersecurity
measures have created a need for applying decentralized optimization paradigms. In this paper,
we develop a novel asynchronous decentralized optimization framework to solve the UC prob-
lem. We demonstrate that our asynchronous approach outperforms conventional synchronous
approaches, thereby promising greater gains in computational efficiency.
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1 Introduction

Large scale power networks form the backbone of the global energy infrastructure. A surge in
global power consumption now demands better energy distribution schemes as well as increased
efficiency in the management of power network resources and assets. Among the most critical
assets of any power network infrastructure are the generators which produce electricity and
the buses which demand power. The buses and generators form a part of the power network
topology where the generators collectively aim to meet the total demand imposed by all the
buses while also adhering to network-wide requirements on the flow of electricity. Power network
optimization problems aim at better utilization of the generators and form a significant part of
power systems research. The Unit Commitment (UC) problem [1] is one of the key optimization
problems that has received considerable attention over the past few decades. The goal of the
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UC problem is to determine how much power each generator has to produce given the cost of
production and the power demand to be met.

The UC problem is a critical component for daily production planning for power utility
companies. Utility companies that command power networks typically solve the UC problem
many times throughout the entire day to determine the production levels of different generators
on an hourly basis. The power network is subject to demand uncertainties that require constant
monitoring and adjustments to power generation. There may also be sudden and unpredictable
outages caused by natural or man-made phenomena that may disrupt the highly sensitive,
hourly production schedule of the generators network-wide. An efficient algorithm for solving
the UC problem therefore needs to be highly robust to sudden changes in operating conditions.
The UC problem involves binary decision variables to decide which generators must be turned
on or off at various time epochs across a fixed planning horizon. The resulting optimization
model of the UC problem therefore becomes a Mixed Integer Programming (MIP) problem that
falls under the category of non-convex optimization problems.

A large-scale power network is topologically divided into a number of regions which may
represent different power utility companies or subsidiaries. Traditionally, a centralized model
has been employed to conduct unit commitment on power networks. However, the central-
ized model has several drawbacks. First, centralized methods are unable to isolate potentially
sensitive commercial operations data. Second, the performance of a centralized model for
unit commitment deteriorates with increase in network size leading to poor scalability thereby
making it unsuitable for large-scale power networks. Third, an attack on a single node can
compromise the entire power network.

Decentralized optimization methods have lately emerged as a means to tackle the different
operational issues presented above. Owing to a loose coupling between regions, the global
UC optimization problem can be decomposed into smaller subproblems, each corresponding
to a particular region. By iteratively solving each region’s subproblem locally and exchanging
information with neighboring subproblems, we can completely decentralize the solution to the
global UC problem. Since each subproblem is locally held by the region itself, decentralized
methods retain privacy of commercial data pertaining to each region. Further, decentralized
methods enable solving for the global optimum only on the basis of local infrastructural data
and relevant operational data points of neighboring regions thereby improving scalability.

Existing approaches to decentralized unit commitment problems [2] adopt a synchronous
approach wherein each iteration of the local subproblem and the subsequent information ex-
change is performed in tandem by all regions. Owing to a tight coupling between computation
and communication, the information obtained from neighboring regions in the synchronous ap-
proach is always pertaining to the current iteration. Such synchronous models do not account
for geographically distant computational nodes wherein transfer of data between nodes comes
with its own communication delay. At different nodes, different subproblems and computing ar-
chitectures with varying computational capabilities will lead to heterogenous processing times.
This variability in the computation time would be further compounded by time-varying load-
ing on the computing resources due to on-line control of many connected assets in the region.
Therefore, methods that rely on synchronization of computational nodes do not account for
delays incurred in practice. Consequently, in large-scale distributed systems involving many in-
terconnections, achieving perfect synchrony is extremely difficult [3]. Furthermore, synchronous
computational methods may simply fail to converge in the face of even a slight degree of asyn-
chrony [4]. Even with a hypothetical synchronous computation system, a slow computational
node or communication link can significantly increase the computational time by under-utilizing
the computing resources. This causes all the computational nodes to wait until the problematic
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node completes the computation and data transfer. In addition, online instrumentation and
digital control might make power systems vulnerable to cyber attacks and with the assumption
of synchronization, any attack to stop or slow down the operations of a single local node can
significantly impact global power system operations.

Asynchronous methods can be used to circumvent the aforementioned problems as well as
to develop a more flexible and resilient computational platform. We stand to gain significant
computational benefit by adopting an asynchronous approach wherein those regions with a
smaller subproblem to solve may proceed onto their next iteration without waiting on the
slower regions to finish. In doing so, each region executes its iterations independently of other
regions and uses the latest available information from its neighbors for each of its iterations.
In an asynchronous approach, the solution of the entire system is no longer held up by a slow
computational node and a faster solution to the global UC problem can be expected.

Non-convex, MIP problems are challenging to solve in their own right. However, asyn-
chronous nature adds another layer of complexity to such problems and their convergence
behavior is still an open question in the optimization community. To the best of our knowl-
edge, this paper is the first to attempt to outline an asynchronous decentralized MIP based
framework to solve the UC problem. With a region based decomposition, our technique asyn-
chronously solves for an optimal production schedule within each region while ensuring privacy
as well as minimal sharing of commercial data between any two regions. We iteratively use
the Alternating Direction Method of Multipliers (ADMM) to solve the UC problem locally and
exchange information with neighbors, eventually converging to a solution close to that of the
centralized problem. Our method can be orchestrated on cloud based infrastructure, institu-
tional clusters or a distributed hybrid combination of both. We show that our method is capable
of handling unbalanced computation among regions and computationally performs better than
its synchronous counterpart without compromising on solution quality to a great extent.

Our paper is organized as follows. In Section 2 we discuss approaches in power systems that
are pertinent to the UC problem. We then proceed towards the centralized and decentralized
mathematical formulations of the UC problem in Section 3. We describe our novel asynchronous
decentralized algorithm for solving the UC problem in Section 4. We detail the experimental
setup used to validate our algorithm as well as discuss the results of our algorithm on the IEEE
118 bus case in Section 5. We present our concluding remarks in Section 6.

2 Related Work

In the field of power systems, owing to the complexity of MIP UC problems, there have been
several attempts to seek a parallel solution of the UC problem. The work done in [5] attempts to
solve the stochastic unit commitment problem for a fleet of sustainable energy sources wherein
the imposed demand is time varying. The work done in [6] also uses a dual decomposition to
solve a multi-area unit commitment problem in a synchronous fashion. The work done in [7]
solves a unit commitment problem using a two stage approach via an incremental sub-gradient
method to progress the dual variable while simultaneously recovering the primal feasibility.

Decentralized methods form a fast emerging sub category within distributed computing
which are best suited for geographically distributed computing elements due to their fault-
tolerant nature and high scalability [8]. In the context of decentralized approaches, augmented
Lagrangian techniques like ADMM [10] have been popular for quite some time, owing to their
fast convergence properties [11], but their applicability has mostly been limited to solving con-
vex problems. However, recent works have focussed on application of ADMM to a fixed set
of non-convex and non smooth distributed optimization problems under some strict conditions
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[12]. The work done in paper [2] investigates large-scale decentralized unit commitment by solv-
ing the non-convex unit commitment problem subject to operational constraints by using dual
decomposition and ADMM in a synchronous manner. The work done in the paper [9] demon-
strates convergence of asynchronous ADMM in a distributed master-slave based computing
model.

Our algorithm differs significantly from all approaches presented in this section. We pri-
marily employ a region based topological decomposition of the power network and solve each
region’s sub problem in a decentralized and asynchronous fashion. Our problem is not a con-
sensus optimization problem and owing to its asynchronous and non-convex nature is much
more challenging to solve. In this paper we demonstrate that our algorithm provides a good
solution quality in a decentralized and asynchronous setting. We now proceed to the problem
formulation.

3 Problem Formulation

The UC problem is usually solved over a fixed planning horizon of size T , divided into discrete
time epochs. We denote the set of all generators as G and the set of buses as B. The UC
optimization problem can be represented as follows:

min
x,y

c�x+ d�y (1a)

subject to Ay +Bx = E (1b)

Fy = H (1c)

where x is a vector of length |G|×T whose components are binary values specifying if generators
are turned on or turned off across each time epoch for each generator in the network. Similarly,
y is a real-valued vector of length (|B|+|G|)×T whose components represent dispatch variables
specifying the level of production on generators as well as the electric phase angles on separate
buses.

The objective function (1a) in Problem (1) involves two terms c�x and d�y which represent
the cost associated with turning generators on or off across the planning horizon, referred to as
commitment, and the cost incurred in production of electricity respectively. The objective is
to minimize this total cost across the entire network subject to constraints that either focus on
every generator separately as in (1b), or link all the generator operations together as in (1c).
The first class of constraints given by (1b) include limits on generator production capacities
and embody flexibilities such as how fast production can change within an hour. The second
set of constraints given by (1c) ensure that network demand is satisfied while ensuring that
electricity flow is in line with transmission capacities. We refer the interested reader to [13] [2]
for a more detailed formulation of the UC problem.

Given a region based partition, we can divide the UC problem stated in Problem (1) into
smaller region based subproblems. In such a case the objective function of each subproblem
only involves variables dealing with assets of a particular region. Similarly, each region also
ends up holding its own set of constraints corresponding to (1b), (1c) involving assets specific
to that region alone. Therefore, given a region based partition, the UC problem may be solved
in an entirely decentralized manner where each processing element handles the UC sub-problem
of a particular region. Every region iteratively tries to obtain a balance in terms of the dispatch
variables with respect to the subproblem residing in its neighboring regions.
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We define Gr as the set of generators in region r and Rr as the set of neighboring regions
of r. Similarly, xr,yr represent the binary commitment and dispatch variables of region r. In
the decentralized case, ADMM is applied by relaxing constraint (1c). ADMM iteratively uses
Lagrangian penalty terms λ and ρ to ensure that the final solution satisfies this constraint
within acceptable accuracy. Therefore, ADMM ensures that flow of electricity is balanced
between regions causing production of each region to adjust accordingly thereby satisfying
demand per region indirectly for the entire network.

For each region r, we obtain ŷr′ which is an estimate of yr′ ∀r′ ∈ Rr, and solve the
following problem:

min
xr,yr

c�r xr + d�
r yr + λ�

r (Fryr +
∑

r′∈Rr

Fr′ ŷr′ −Hr)+ρ

∣∣∣∣∣

∣∣∣∣∣Fryr +
∑

r′∈Rr

Fr′ ŷr′ −Hr

∣∣∣∣∣

∣∣∣∣∣
2

2

(2a)

subject to Aryr +Brxr = Er (2b)

(2c)

where λr is updated as follows.

λr = λr + ρ(Fryr +
∑

r′∈Rr

Fr′ ŷr′ −Hr) (3)

With the decentralized formulation of the UC problem presented above, we now move on to
describe the asynchronous decentralized UC algorithm.

4 Algorithm Design

As stated in Section 1, solving the non-convex decentralized UC problem is not an easy task.
However, it is much easier to solve a convex version of the same problem [2]. The optimization
model given in Problem(2) can be relaxed into a convex case by removing the binary constraint
for commitment variables in xr and making them continuous in the interval [0, 1]. We can use
the solution from the relaxed version as a good initial guess to solve the actual decentralized
UC optimization model given by Problem (2) with the binary condition enforced. Therefore
we solve the decentralized UC optimization model given by Problem (2) in two phases. It
is important to note that both phases are solved in a purely asynchronous and decentralized
manner.

Algorithm 1 represents the asynchronous decentralized algorithm for solving the UC problem
which is solved in convex and non-convex phases. In the former phase, we relax the binary
commitment vector x such that all its elements lie in the continous interval [0, 1] making
Problem (2) convex whereas in the latter phase, we impose the constraint such that x ∈ {0, 1}
thereby solving its non-convex version. Each node then receives the dispatch estimate ŷr′

from each of its neighboring region r′. Local convergence in either case is determined if the
norm of the primal and dual dispatch variables falls below a fixed threshold denoted by α
and β respectively. Global convergence occurs when every region attains local convergence.
We designate a master node to determine global convergence using local convergence values of
worker nodes asynchronously. The algorithm terminates upon attaining global convergence.
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Algorithm 1 Asynchronous Decentralized UC Algorithm run on each processor

Initialize xr,yr

k ← 0
for phase = convex,non-convex do

while global convergence is not acheived do
send yr to regions ∀r′ ∈ Rr

in convex phase, set x such that 0 ≤ xi ≤ 1, ∀xi ∈ x
in non-convex phase, set x such that xi ∈ {0, 1}, ∀xi ∈ x
solve Problem (2)
compute ȳk

r =
∑

r′∈Rr
Fr′ ŷr′

update λ according to (3)
if (||yr − ȳk

r ||< α) and (||ȳk
r − ȳk−1

r ||< β) then
local convergence ← 1

else
local convergence ← 0

end if
k ← k + 1

end while
end for

5 Experimental Setup and Results
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We simulate a large power network topologically divided into 10 regions based on the IEEE
118 bus case involving 54 generators derived from MATPOWER [14]. We solve the unit com-
mitment problem over a planning horizon comprising of 24 time epochs spanning an entire
day. The objective behind this simulation is to determine convergence behavior of Algorithm 1
owing to its non-convex nature. We simulate a geographically dispersed set of nodes on a high
performance cluster comprising of Intel Xeon CPUs with a clock rate of 2.80GHz with each
core representing one region. We used Remote Memory Access (RMA) primitives of MPI with
passive target synchronization to facilitate asynchronous message passing. The mpi4py [15]
package was used as an interface to the MPI library for our experiments. Gurobi 6.5 [16] was
used for performing the optimization with respect to Problem (2) on each node. We evaluate
Algorithm 1 with respect to its synchronous counterpart obtained by inserting an MPI Barrier

1http://energy.komisc.ru/dev/test˙cases
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call at the beginning of each iteration of Algorithm 1.
An asynchronous algorithm is stochastic in nature, therefore we performed a total of 50

runs of Algorithm 1 with the same run time parameters and recorded the communication
and the computation time for each of the runs with α = 5 and β = 10. For the synchronous
version, apart from the communication and computation time, we also record the idle time each
processor spends owing to the Barrier call. In order to establish a high degree of asynchrony,
we add a small delay of 0.2 secs for half of the regions in both cases. We measure the degree of
asynchrony, ∆, on the basis of the ratio between the least number of iterations vs the maximum
number of iterations performed by any node in the asynchronous case. Figure 1(b) shows the
distribution of ∆ measured over all the 50 runs. A mean value of 0.74 implies that for every
100 iterations performed by the fastest region in the system, the slowest region performs on an
average close to 74 iterations. Therefore, Figure 1(b) demonstrates that the 10 region partition
of the 118 bus case has a high degree of asynchrony.
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Figure 2: Analysis of Convergence Time profile for Asynchronous and Synchronous Methods

Figure 2(a) pictorially depicts data pertaining to the fraction of time spent by the processors
performing communication and computation tasks in the asynchronous case. Figure 2(b) shows
the fraction of time spent idle by the processors in addition to the fraction of time spent in
communication and computation tasks in the synchronous case. From Figures 2(a), 2(b) we
can infer that the asynchronous version of Algorithm 1 spends a substantial part of its time
indulging in actual computation tasks as compared to its synchronous counterpart. Moreover, it
can also be noted from Figure 2(b) that in the synchronous algorithm nodes spend a significant
amount of time in an idle state.

We calculate the average communication and computation time for each of the nodes and
obtain an aggregate of total CPU time spent in each task by summing over the respective
average values for all the nodes. We present the aggregate values of CPU time separately for
the computation as well as communication related tasks for both synchronous and asynchronous
versions of Algorithm 1 in Figure 3. From Figure 3(a) and Figure 3(b) we can see that the
total aggregate CPU time spent in both computation and communication is in fact lesser in
the asynchronous case than that of the synchronous version. Therefore, from Figure 3 we can
infer that Algorithm 1 promises faster convergence while tolerating a good degree of asynchrony
while a synchronous version incurs a significant amount of idle time. From Figures 2, 3 we also
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r =
∑

r′∈Rr
Fr′ ŷr′
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r − ȳk−1

r ||< β) then
local convergence ← 1

else
local convergence ← 0

end if
k ← k + 1

end while
end for

5 Experimental Setup and Results

Region	1

Region	2

Region	4
Region	3

Region	5

Region	6

Region	7

Region	8

Region	10

Region	9

(a) 10 region partition of IEEE 1118 bus case

0.68 0.7 0.72 0.74 0.76 0.780

5

10

15

20

∆

Fr
eq
ue
nc
y

 

 

density

Normal
distribution

(b) Distribution of ∆, with µ = 0.74, σ = 0.0235

Figure 1: IEEE 118 bus case1

We simulate a large power network topologically divided into 10 regions based on the IEEE
118 bus case involving 54 generators derived from MATPOWER [14]. We solve the unit com-
mitment problem over a planning horizon comprising of 24 time epochs spanning an entire
day. The objective behind this simulation is to determine convergence behavior of Algorithm 1
owing to its non-convex nature. We simulate a geographically dispersed set of nodes on a high
performance cluster comprising of Intel Xeon CPUs with a clock rate of 2.80GHz with each
core representing one region. We used Remote Memory Access (RMA) primitives of MPI with
passive target synchronization to facilitate asynchronous message passing. The mpi4py [15]
package was used as an interface to the MPI library for our experiments. Gurobi 6.5 [16] was
used for performing the optimization with respect to Problem (2) on each node. We evaluate
Algorithm 1 with respect to its synchronous counterpart obtained by inserting an MPI Barrier

1http://energy.komisc.ru/dev/test˙cases

6

Asynchronous Decentralized Framework for Unit Commitment Ramanan, Yildirim, Chow, Gebraeel

call at the beginning of each iteration of Algorithm 1.
An asynchronous algorithm is stochastic in nature, therefore we performed a total of 50

runs of Algorithm 1 with the same run time parameters and recorded the communication
and the computation time for each of the runs with α = 5 and β = 10. For the synchronous
version, apart from the communication and computation time, we also record the idle time each
processor spends owing to the Barrier call. In order to establish a high degree of asynchrony,
we add a small delay of 0.2 secs for half of the regions in both cases. We measure the degree of
asynchrony, ∆, on the basis of the ratio between the least number of iterations vs the maximum
number of iterations performed by any node in the asynchronous case. Figure 1(b) shows the
distribution of ∆ measured over all the 50 runs. A mean value of 0.74 implies that for every
100 iterations performed by the fastest region in the system, the slowest region performs on an
average close to 74 iterations. Therefore, Figure 1(b) demonstrates that the 10 region partition
of the 118 bus case has a high degree of asynchrony.

53% 47%

Asynchronous Convergence Time Profile

 

 

Computation
Communication

(a)

37%

41%

23%

Synchronous Convergence Time Profile

 

 Computation
Communication
Idle

(b)

Figure 2: Analysis of Convergence Time profile for Asynchronous and Synchronous Methods

Figure 2(a) pictorially depicts data pertaining to the fraction of time spent by the processors
performing communication and computation tasks in the asynchronous case. Figure 2(b) shows
the fraction of time spent idle by the processors in addition to the fraction of time spent in
communication and computation tasks in the synchronous case. From Figures 2(a), 2(b) we
can infer that the asynchronous version of Algorithm 1 spends a substantial part of its time
indulging in actual computation tasks as compared to its synchronous counterpart. Moreover, it
can also be noted from Figure 2(b) that in the synchronous algorithm nodes spend a significant
amount of time in an idle state.

We calculate the average communication and computation time for each of the nodes and
obtain an aggregate of total CPU time spent in each task by summing over the respective
average values for all the nodes. We present the aggregate values of CPU time separately for
the computation as well as communication related tasks for both synchronous and asynchronous
versions of Algorithm 1 in Figure 3. From Figure 3(a) and Figure 3(b) we can see that the
total aggregate CPU time spent in both computation and communication is in fact lesser in
the asynchronous case than that of the synchronous version. Therefore, from Figure 3 we can
infer that Algorithm 1 promises faster convergence while tolerating a good degree of asynchrony
while a synchronous version incurs a significant amount of idle time. From Figures 2, 3 we also

7



672 Paritosh Ramanan et al. / Procedia Computer Science 108C (2017) 665–674Asynchronous Decentralized Framework for Unit Commitment Ramanan, Yildirim, Chow, Gebraeel

   
Asynchronous    

Synchronous

Aggregate Computation Time

967.02 secs

1367.68 secs

(a)

   Asynchronous      

Synchronous

Aggregate Comunication Time
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Figure 3: Analysis of aggregate total CPU time spent in Asynchronous and Synchronous meth-
ods

Synchronous Asynchronous
Mean (µ) Std. Dev. (σ) Mean (µ) Std. Dev. (σ)
369.57 0.72 180.40 122.02

Table 1: Convergence time analysis of Algorithm 1

infer that even though the asynchronous method spends lesser time performing computation
related tasks, it is computationally more efficient than the synchronous case as the fraction of
time spent in computation is higher for the asynchronous case.
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Figure 4: Performance Analysis of Algorithm 1

Table 1 shows the mean µ and standard deviation (σ) of 50 runs of both the synchronous
and the asynchronous versions of Algorithm 1 with the same parameters. From Table 1 we can
see that the synchronous case exhibits very little variation in convergence time and is relatively
consistent across all runs whereas the asynchronous case shows considerable variation in run
time. However, we can also infer that on an average, the asynchronous method is almost twice
as fast as the synchronous method and convergence time values within 1.5σ of the mean in the
asynchronous case are still lower than the synchronous case.
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In modern large-scale power systems, the UC problem is solved in a high frequency manner
throughout the entire day. In order to demonstrate the computational gains in a high frequency
environment, we apply the asynchronous method to solve the UC problem over 50 consecutive
runs with the same runtime parameters. Figure 4(a), a bar graph demonstrates the cumula-
tive time taken by our algorithm with respect to its synchronous counterpart over all the 50
runs thereby implying the tremendous computational advantage presented by the asynchronous
algorithm in a high frequency setting.

To measure the quality of solution of the optimization model, we use a quantity known as
the optimality gap. It is the relative difference in objective values with respect to the optimal
solution of the problem which is provided by the centralized method in our case. Therefore, we
used the objective value yielded by the centralized solution to calculate our optimality gap.

Figure 4(b) shows a scatter plot of the optimality gap yielded by Algorithm 1 versus total
convergence time over all the 50 runs in blue while the synchronous result is shown in green.
We can see that the optimality gap for the asynchronous algorithm is higher than that of the
synchronous although the asynchronous version mostly takes much lesser time to arrive at a
tolerable optimality gap. While an optimality gap of zero is an interesting theoretical problem,
in practice it is more preferable to obtain a small optimality gap in a much faster way[17].
Further, we can also infer from the figure that the optimality gap has an upper bound at
approximately 8%. Since our problem is non-convex and cannot be reduced to a consensus
optimization problem in its relaxed state, we see a variation in solution quality and a strong
correlation between solution time and quality can be inferred. This variation is due to bad
solution paths taken by the algorithm which leads to a deteriorating optimality gap.

6 Conclusion

In this paper, we present an asynchronous decentralized algorithm for solving the MIP UC
problem in power networks. By decomposing the power network into regions with smaller sub-
problems, we can decentralize the solution to the UC problem wherein each region solves its
locally held UC problem with respect to its network constraints and on the basis of information
received from its neighbor regions. In order to handle the complexity stemming from the
non-convex nature of our problem and make our solution more robust, we employ a two-stage
asynchronous solution where the first phase solves a relaxed version of the UC problem followed
by the non-convex MIP version of the same problem. We use a 10 region partition of the IEEE
118 bus problem to demonstrate that our asynchronous decentralized algorithm outperforms
its synchronous counterparts in terms of the computation, communication and idle time as well
as with respect to the convergence time and the solution quality as assured by the optimality
gap. We show that our algorithm is specifically suited to high frequency applications of the UC
problem owing to a significantly less time incurred in its overall execution as opposed to the
traditional synchronous approach.

From the analysis of the results we can draw a number of conclusions. First, solving non-
convex problems asynchronously using ADMM may lead to bad solution paths in some cases
which affects the solution quality. Second, there exists a very strong correlation between so-
lution time and quality in such cases. Third, despite the non-convex nature of the problem
asynchronous methods are capable of providing significant computational benefit while yielding
a solution that is in close approximation to that of synchronous methods.

Acknowledgement. This material is based upon work supported by the U.S. Department of
Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathe-
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