TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDING DIRECTORY</td>
<td># 05</td>
</tr>
<tr>
<td>ADMISSIONS</td>
<td># 08</td>
</tr>
<tr>
<td>REGISTRATION</td>
<td># 09</td>
</tr>
<tr>
<td>CPT, OPT, F-1 EXCEPTIONS</td>
<td># 10</td>
</tr>
<tr>
<td>GRIEVENCES AND APPEALS</td>
<td># 14</td>
</tr>
<tr>
<td>CONTACTS</td>
<td># 16</td>
</tr>
<tr>
<td>OOIS AND HOUSING</td>
<td># 19</td>
</tr>
<tr>
<td>FORM COMPLETION PROCESS</td>
<td># 20</td>
</tr>
<tr>
<td>APPLY FOR GRADUATION</td>
<td># 24</td>
</tr>
<tr>
<td>MASTER’S CONCENTRATIONS</td>
<td># 25</td>
</tr>
<tr>
<td>FAQS</td>
<td># 43</td>
</tr>
</tbody>
</table>
Industrial engineers are the innovators solving the world’s problems.

See the complete MS Program Overview online on the University Bulletin

Master’s Degree Programs of this department offer the flexibility of full or part-time study. Most of the courses are offered in the evening, allowing students to continue full-time employment in local industries. Some program classes are offered at off-campus sites. Many of the graduate-level courses are also offered in the evening, allowing graduate students also to continue full-time employment in local industries. To further accommodate the working student population, several engineering courses are offered online (refer to the schedule of classes to determine availability).

All incoming M.S. students must demonstrate competency in undergraduate probability and statistics, through successful completion of BE 2100, or equivalent courses. If the student fails to show competency, he or she may be required to complete a pre-requisite course in probability and statistics.
DEPARTMENT INTRODUCTION

We have a long history of helping our students achieve their educational and professional goals. Our personal approach to the entire university experience – from admission to job placement – is designed to provide students with the resources and support to become successful. Industrial and systems engineers, like other engineers, are problem solvers. They design, streamline and improve complex processes and systems for maximum efficiency, whether the goal is to save time, save money, improve quality — or all three. Industrial and systems engineers are in high demand in nearly every sector of the economy, from manufacturing, service industries and energy, to Big Data, Supply Chain, and Healthcare.

Our Mission is to foster an exceptional learning environment where aspiring industrial & systems engineers can develop practical and applied research regarding complex systems that will create impact in our metropolitan and global community. We believe that by doing this, we will set a global standard for industrial & systems engineering programs that advance knowledge and solve challenges, while developing a vibrant and diverse student body.

Faculty in the ISE Department have established research strengths in areas such as supply chain management, freight logistics, product design, product life-cycle modeling, end-of-life product value recovery, sustainability, business analytics and big data, healthcare systems engineering, and smart engineering systems. A National Science Foundation (NSF) Center for e-Design has been established in ISE. This NSF Center for e-Design conducts research in fundamental science, mathematics and engineering principles in the development of new products and systems. The main focus of the center is to create new tools, processes and methodologies that will assist in generating higher quality products at lower costs, while also reducing the time associated with complex engineered products and systems.

The 25,000-square-feet high bay area of the ISE Building at 4815 is being converted into the Smart Manufacturing Demonstration Center (SMDC) a hub focused on developing the next generation of digital manufacturing professionals and leaders in automation and robotics. It houses a variety of equipment and software, connected with Cisco’s secured systems infrastructure, that will enable research and education in such domains as collaborative robots, additive manufacturing, computed tomography (CT) scanning, automated laser scanning, and resistance spot welding. The lab allows researchers to explore aspects of the Internet of Things (IoT), including data management, storage, infrastructure and security.
VISION
To set a global standard for industrial & systems engineering programs that advance knowledge and solve challenges, while developing a vibrant and diverse student body.

MISSION
To foster an exceptional learning environment where aspiring industrial & systems engineers can develop practical and applied research regarding complex systems that will create impact in our metropolitan and global community.

VALUES
- Foster Experiential Learning
- Cultivate Engagement
- Demonstrate Proactivity and Agility
- Develop Global Mindsets
- Seek Continuous Improvement
- Advance Sustainability
- Support Entrepreneurial Projects
ISE BUILDING DIRECTORY

Once you have found our building tucked back behind the Engineering Technology and Biomedical Engineering Buildings, you still might be a little lost. The Manufacturing Engineering Building we call home has 2 floors, multiple labs and offices, and a newly renovated highbay area that is home to the SMART Manufacturing Demonstration Center. We are a department within the College of Engineering, which is located across Warren Ave. on the corner of Anthony Wayne Drive.

BUILDING ADDRESS - 4815 Fourth Street, Detroit, MI 48201

Check out the campus map online!
Campus Map: http://maps.wayne.edu/all/?q=Industrial+engineering#ise
MS PROGRAM
ADMISSIONS

Please find admissions information at engineering.wayne.edu/admissions/graduate.php.

The application for admissions consideration is available online. Please email Graduate Program Coordinator Eric Scimeca via engineeringgradadmissions@eng.wayne.edu to contact the department with general admissions related inquiries.

Please find further program-specific contacts indicated on individual program websites. Please find detailed information on international student requirements on the Graduate School’s website and the Office of International Students and Scholars website.

You must have a bachelor’s degree from a regionally accredited institution in the United States or a comparable degree from an officially recognized institution outside the United States to apply for graduate admission.

Admission to ISE MS programs is contingent upon admission to the Graduate School. The MS in Industrial Engineering requires a baccalaureate degree in engineering and an approximate 2.8 GPA or its equivalent in the upper division of their undergraduate program. Conditions to admission or prerequisites may be assigned in the admissions process. The GRE is NOT required, however, high GRE scores will be considered in application evaluation. Students with degrees in related disciplines with a strong analytical base are also considered. Applicants whose undergraduate education is deficient in prerequisites for graduate classes may be required to take background courses that will NOT count toward the 30-credit degree requirement. Applicants can provide supplemental materials such as resume, personal statement, GRE scores, and letters of recommendation to support their application.
HOW TO REGISTER

Registration

Go to the Registration Portal at registration.wayne.edu

To look up classes before registration opens, or if you are not a current student, you can view the times and days classes are offered through Browse Classes. See “How to Browse for Classes.”

View the Academic and Registration Calendar to see when registration is available for students.

- Select “Register for Classes”
- Log in using your WSU AccessID and password, then select your term.
- If you know your Course Reference Number(s), use the Enter CRNs tab. Enter the CRN and click Add to Summary to add the class to your schedule. Click Submit to register.

Late Registration

If a student needs to register for classes after the 2nd week of class, they will be unable to do so via Academica but will need the registrar’s office to complete the action. All students should do the following:

Email registrationhelp@wayne.edu with the following information:

- Name
- Banner of Access ID
- Name of the Course
- Course Reference Number (CRN)
- Number of credit hours if the course is a variable

Please inform Registration of the class(es) you need to get into via late registration. The departmental advisor will have placed the appropriate overrides before you attempt to register. Should you require an override code that has not been placed; you will need to contact the advisor to provide it and then the process can continue.

Read and confirm the Financial Responsibility Agreement

for more on this, go to: https://wayne.edu/bursar/student-obligation

Dropping and Adding

(through the first week of classes)
Start at the Registration Portal (registration.wayne.edu) and log into “Register for Classes.” To adjust your schedule, use the Action menu in the Summary panel to select Drop with 100% tuition cancellation or Register. Click Submit to save changes.

Changing Variable Credit

Once you have registered for a variable credit class, click on the “Schedule and Options” tab. Click on the Hours of a variable credit class and you will be allowed to change the number of credits. Click “Submit” to update your schedule.

Register for Text Alerts

There is a way to get a quick reminder right before academic cut-off dates. The Office of the Registrar can send text message reminders to students before deadlines, such as the last day to receive tuition cancellation. To take advantage of this service go to broadcast.wayne.edu.
CPT, OPT, F-1

EXCEPTIONS

01. CURRICULAR PRACTICAL TRAINING (CPT) FORM
Curricular Practical Training (CPT) is defined as "employment which is an integral or important part of a student's curriculum, including alternate work/study, internship, cooperative education, or any other type of required internship or practicum which is offered by sponsoring employers through cooperative agreements with the school." Thus, CPT for F-1 students is intended to provide work experience in situations where the work serves as an integral part of a student's academic program, prior to completion of that program and the credits earned will count toward the student's degree credits. MS students may use four credits of CPT IE6991 but a maximum of two credits will count towards minimum degree requirements. This means that the proposed employment must be directly related to a student’s major.

02. OPTIONAL PRACTICAL TRAINING (OPT) FORM
Optional Practical Training (OPT) for F-1 students is intended to provide hands-on practical work experience complementary to the academic program. An F-1 student is eligible for a MAXIMUM OF 12 MONTHS. However, if a student begins a new academic program at a higher level (masters after bachelors degree or PhD after masters), the student is eligible for another 12 months of OPT. It is important to note, however, that part-time optional practical training (20 hours per week or less) is deducted from the available training at one-half the full-time rate. Thus, 2 months of part-time training would count as a 1 month deduction from the available 12 months.

While on optional practical training, individuals are still considered to be F-1 students at Wayne State even though they may be working elsewhere in the United States.

03. F-1 FULL TIME ENROLLMENT EXCEPTION & LAST SEMESTER EXCEPTION
F-1 visa holders are students who are permitted to enter the U.S. to pursue a full course of study. An international student can submit the Fulltime Enrollment Form to request to be considered a fulltime student in their first and last semester while taking less than 8 credits. After they complete the course of study, they are required to leave the U.S., unless they change their immigration status. In general, F-1 students who are in legal immigration status are eligible to work on-campus 20 hours per week during the Fall and Winter terms and 40 hours per week during annual vacations and official breaks, e.g., Spring Break/Winter break.
GRADUATE GRADING POLICY

To be awarded a graduate degree, a student must have achieved at least a ‘B’ (3.0) overall grade point average. Grades of ‘B-minus’ and below are unsatisfactory for graduate level work. A limited number of ‘B-minus’, ‘C-plus,’ or ‘C’, though unsatisfactory, may be applied toward a graduate degree provided they are offset by a sufficient number of higher grades to maintain a grade point average of 3.0. Grades below ‘B’ can constitute reason for dismissal from a program at the department or program’s discretion. Students should consult with their departments and advisors regarding unsatisfactory grades and their impact on good academic standing. All graduate teaching assistants and graduate research assistants must maintain a minimum grade point average of 3.0 in order to continue their assistantship appointments. Every effort is made to assist students whose work suffers as a result of a condition beyond their control, or interruption of study for military service.

The graduate grading system is intended to reflect higher standards of critical and creative scholarship than those applied at the undergraduate level. To receive a graduate grade in courses open to both undergraduate and graduate students, the graduate student is expected to do work of superior quality and is required to do any additional work specified by the instructor.

Students with GPAs below 3.0 are placed on probation systemically and automatically have a hold placed on their registration. Such students are required to confer with their advisor to develop a plan and timetable for elevating their GPA. If the advisor approves the plan, they should notify the school/college to release the GPA registration hold so the student can register for the agreed upon course(s).

The mark of I (Incomplete) is given to a student when he/she has not completed all of the course work as planned for the term and when there is, in the judgment of the instructor, a reasonable probability that the student will complete the course successfully without again attending regular class sessions. The student should be passing at the time the grade of I is given. A written contract specifying the work to be completed should be signed by the student and instructor. Responsibility for completing all course work rests with the student.

The mark of I will be changed to a letter grade when the student completes the course work as arranged with the instructor or, if the instructor has left the University, with the Chairperson of the department or other instructional unit. Work must be completed within one calendar year. There are NO extensions.

The mark of I will not be awarded if, in the instructor’s judgment, it is necessary for the student to attend subsequent sessions of the class. If regular attendance is necessary to complete coursework, the student must register for the class in which attendance is planned. The student will be assessed tuition and applicable fees for the second registration. If the student decides to register for the course, subsequent to the assignment of an I, then the mark of I for the original election will be changed to a Withdrawal/Passing (WP), and the student will be responsible for tuition and applicable fees for the second registration. Students are responsible for notifying their department and the department offering the course that they have reregistered for the course so that the I is not changed to an F.

The mark of WF (Official Withdrawal Failing) is given when the student withdraws from the course in accordance with University policy and the student had earned a failing grade as of the date the withdrawal is approved.

The mark of WN (Official Withdrawal No Basis for Letter Grade) is given to students when there is no basis for a letter grade.

The mark of WP (Official Withdrawal Passing) is given when the student drops the course in accordance with University policy and the student had earned a passing grade as of the date the withdrawal is approved.

The mark of Y (Deferred) is given when the student is up-to-date in the work of a course planned to continue beyond the semester (i.e., essay, thesis, dissertation and certain courses taken in sequence).

The mark of Z (Auditor) is given when the student has formally registered for the course for audit. The student’s Academic Dean or his/her designee must provide written audit authorization to the student at the time of registration.
ACADEMIC MISCONDUCT

Academic misconduct is any activity that tends to compromise the academic integrity of the institution or undermine the education process. Such activity may result in failure of a specific assignment, an entire course, or, if flagrant, dismissal from Wayne State University.

The instructor of record may report the alleged violation of the Student Code of Conduct using the referral form at the following link: [Academic Misconduct Action](https://doso.wayne.edu/conduct/pdf/student-code-of-conduct.pdf).

The referral should be submitted as soon as possible after the event takes place or when it is reasonably discovered.

For a description of all student conduct policies and additional information about the conduct process, please refer to the Student Code of Conduct: https://doso.wayne.edu/conduct/pdf/student-code-of-conduct.pdf

Examples of academic misconduct are continued on the following page.

NON-ACADEMIC MISCONDUCT

Any individual in the university community may report an alleged violation of the Student Code of Conduct using the referral form at the following link: [Non-Academic Misconduct Referral](https://doso.wayne.edu/conduct/pdf/student-code-of-conduct.pdf).

The referral should be submitted as soon as possible after the event takes place or when it is reasonably discovered.
Plagiarism

To take and use another's words or ideas as your own without appropriate referencing or citation. Example: Failure to use appropriate referencing when using the words or ideas of persons. Altering the language, paraphrasing, omitting, rearranging, or forming new combinations of words in an attempt to make the thoughts of another person appear as your own.

Cheating

Intentionally using or attempting to use or intentionally providing unauthorized materials, information or assistance in any academic exercise. This includes copying from another student's test paper, allowing another student to copy from your test, using unauthorized material during an exam and submitting a term paper for a current class that has been submitted in a past class without appropriate permission.

Fabrication

Intentional or unauthorized falsification or invention of any information or citation, such as knowingly attributing citations to the wrong source or listing a fake reference in the paper or bibliography.

Other

Selling, buying or stealing all or part of a test or term paper, unauthorized use of resources, enlisting in the assistance of a substitute when taking exams, destroying another's work, threatening or exploiting students or instructors, or any other violation of course rules as contained in the course syllabus or other written information.
PROCESS OF GRIEVENCES & APPEALS

Several areas within the university have defined processes to respond to student concerns or complaints directly related to their area, including, but not limited to:

- Grade Appeals (https://engineering.wayne.edu/students/engineering_grade_appeal.pdf)
- Student Code of Conduct
- Discrimination, Harassment and Sexual Misconduct
- Student Employee Grievances
- Enrollment Registration Questions
- Tuition and Fee Appeals

Student complaints outside of the processes identified above, should follow the following steps:

01 Official File & Direct Communication

Once a formal student complaint under this process is received by the Dean of Students, an attempt will be made to resolve the issue in a timely manner by working with the student and the appropriate university employees and/or offices to assure a fair process. If the student making the complaint has not had any contact regarding the complaint within fifteen (15) business days of submitting a report, they should contact the Dean of Students Office at doso@wayne.edu.

02 Complaint Referred

When appropriate, a complaint may be referred directly to the department involved. Complaints related to a specific academic college may be forwarded to the appropriate college Dean or his/her designee. Please note a student's complaint may be forwarded to the department it can best be addressed by. It is important to note after a complaint has been reviewed and an outcome determined, a complaint may be deemed “resolved” even though a student may not be satisfied with the outcome.
Our number one goal at Wayne State University is your success as a student. We have a student complaint process in place to assist you with any problems, issues, concerns, or help you need in pursuit of your Wayne State degree. The student complaint procedures outlined below are established to address concerns that may arise. In addition, the University has a federal obligation to track student complaints to help us monitor the quality of our operations and services.

When a student encounters a problem on campus or feels they have been treated unfairly, the student should first try to resolve the issue informally with the faculty/staff member or department directly involved. Many issues can be resolved by making an appointment with a faculty or staff member and calmly and honestly communicating the concern(s).

For more information on complaints in these areas, please visit: https://doso.wayne.edu/complaints

Review Conducted
The Dean of Students Office will annually review the data to identify any trends/issues that warrant further investigation, revision to existing policies, etc. Information on these issues shall be compiled into the Annual Institutional Summary of Student Complaints and shared with the appropriate university office(s) for action.

In accordance with the Higher Learning Commission Policy FDCR.A.10.030 - Institutional Records of Student Complaints

Wayne State University has established the above outlined student complaint procedures. Wayne State University is required by law to share information about the complaints with its accrediting agency, the Higher Learning Commission of the North Central Association of Colleges and Schools; however, individual identities will not be revealed without the express permission of the complainant or as required by law.
We have a team of faculty and staff to help you succeed in your graduate program! Please contact the people below to assist you along the way.

HELPFUL CONTACTS

Dr. Jeremy Rickli
Program Chair, MS Industrial Engineering
313-577-1752
jrlrickli@wayne.edu

Dr. Kyoung-Yun Kim
Program Chair, MS Manufacturing Engineering Program
313-577-4396
kykim@wayne.edu

Gail Evans
Academic Advisor, Industrial and Systems Engineering
(313) 577-2660
gevans@wayne.edu

Eric Scimeca
Admissions and Application Concerns
313-577-0412
eric.scimeca@wayne.edu
Dr. Kenneth Chelst
Program Chair, MS Engineering Management Program
313-577-3857
kchelst@wayne.edu

Dr. R. Babu Chinnam
Interim Department Chair, Industrial and Systems Engineering & Program Chair, MS Data Science and Business Analytics Program
313-577-4846
ratna.chinnam@wayne.edu

Margaret Easley
Administrative Assistant, Industrial and Systems Engineering
313-577-5468
ai6244@wayne.edu
Celestine Aguwa
bd4891@wayne.edu

Kenneth Chelst
kchelst@wayne.edu

Ratna Babu Chinnam
ratna.chinnam@wayne.edu

Evrim Dalkiran
ey5796@wayne.edu

Kyoung-Yun Kim
kykim@wayne.edu

Yanchao Liu
yanchaoliu@wayne.edu

Sara Masoud
hb9225@wayne.edu

Olugbenga Mejabi
aa2292@wayne.edu

Ekrem Alper Murat
amurat@wayne.edu

Dean Pichette
dpichette@wayne.edu

Jeremy L. Rickli
jlrickli@wayne.edu

Jayant Trewn
aa6316@wayne.edu

Saravanan Venkatachalamb
saravanan.venkatachalamb@wayne.edu

Gary Witus
gwitus@wayne.edu

Kai Yang
kai.yang@wayne.edu

Qingyu Yang
qyang@wayne.edu

Murat Yildirim
murat@wayne.edu
OFFICE OF INTERNATIONAL STUDENTS

The Office of International Students and Scholars (OISS) at Wayne State University is here to support and enhance your educational, cultural and social experiences. We collaborate with colleges, departments and the community to create and maintain an inclusive, global campus.

Visit the OISS website at https://oiss.wayne.edu

Whether it’s a ride to the grocery store, help with your resume, academic support or assisting you to navigate through the university system, we can make it happen for you.

STUDENT HOUSING

For more information go to housing.wayne.edu Phone: (313)577-2116; Fax: (313)577-6644; or email: housing@wayne.edu. You can apply online at housing.wayne.edu. Make sure you read the information carefully before you apply. Please contact Housing and Residential Life for further information. OISS housing information can be found at oiss.wayne.edu/current-students/sr-housing

If you can’t find housing on campus, you will need to look for off campus housing.

OFF CAMPUS HOUSING

University Cultural Center Association (UCCA)
David Mackenzie House
4735 Cass Avenue, Detroit 48201
www.detroitmidtown.com
Phone: (313) 577-5088

Off-Campus Housing Opportunities

The Union at Midtown
4830 Cass Avenue, Detroit, MI 48201
(313) 214-2015.
1 bedroom starting at $945/month utilities included
2 bedroom starting at $755/month utilities included

Palmer Court Apartments & Townhomes
5721 St. Antoine, Detroit, MI 48202
(313) 871-4621
2 bedroom spacious townhouses

University Club Apartments
4707 Third St., Detroit, Michigan 48201
(313) 831-4336
1 and 2 bedroom apartments

Belcrest Apartments
5440 Cass Ave., Detroit, MI 48202
(313) 831-5700
Email: office@belcrestapt.net

The Union at Midtown
4830 Cass Avenue, Detroit, MI 48201
(313) 214-2015.
1 bedroom starting at $945/month utilities included
2 bedroom starting at $755/month utilities included

Palmer Court Apartments & Townhomes
5721 St. Antoine, Detroit, MI 48202
(313) 871-4621
2 bedroom spacious townhouses

University Club Apartments
4707 Third St., Detroit, Michigan 48201
(313) 831-4336
1 and 2 bedroom apartments

Belcrest Apartments
5440 Cass Ave., Detroit, MI 48202
(313) 831-5700
Email: office@belcrestapt.net

The Scott
3150 Woodward Ave., Detroit, MI 48201
(313) 818-3703
Numerous floor plan options.
Form Completion Processes

Plan of Work

1. Review
 - Instructions for Plan of Work citation Degreeworks at engineering.wayne.edu/ece/programs/grad-handbook.php#POW

2. Create
 - Your Plan of Work on degreeworks

3. Submit
 - Your request to your MS Program Chair via our "Request Portal".
 - Make sure to submit before completing 12 credit hours to avoid hold!

4. After Approval
 - Your Plan of Work will be locked and a note showing it is approved.
 - If you need to make changes you will need to submit another request via the "Request Portal".

Original and revised POWs must be created and approved through DegreeWorks. If you do not have an approved POW prior to receiving 12 credits, you will have a candidacy hold and will be unable to register for courses.
EXCEPTION TO FULLTIME

01 COMPLETE
fulltime / semester exception form from OISS at https://oiss.wayne.edu/immigration-visas/f-1_opt_form.pdf
Complete section B except for signature and date.

02 ENSURE
credits on form equal registered credits

03 REQUEST
Submit your forms for review, approval, and signatures to your MS Program Chair via our “Request Portal”.

04 SUBMIT
form to Office of International Student Services (OISS).
OPTIONAL PRACTICAL TRAINING (OPT)

REQUEST
Submit your forms for review, approval, and signatures to your MS Program Chair via our “Request Portal”.

COMPLETE
OISS recommendation form (TYPE 1).
https://oiss.wayne.edu/immigration-visas/f-1_opt_form.pdf
Fill in the graduate section except for the signature.

SUBMIT
Submit this form to the OISS office three months in advance of semester and date.

Check with OISS of any responsibilities of the ISE Department for OPT.
CURRICULAR PRACTICAL TRAINING (CPT)

01 Complete CPT training (online)
 - Complete 16 credits

02 Obtain offer letter
 - Dates must match OISS/academic calendar (can start after semester start date).

03 Send offer letter and POW to Program Chair for approval. Designate Spring/Summer or Fall/Winter via our "Request Portal".

04 Submit PDFs of POW, Grad CPT form, Offer letter, Supplemental letters, Signed statement of responsibility, Complete section B in detail via our "Request Portal".

05 Take all forms to OFSC for approval

1). Last day to register is the last day to register for courses (10 days).
2). Submit report on Canvas one week prior to end of semester.

Out of State

Fall/Winter only: Plan to comply with OISS 'physical presence policy' located at: oiss.wayne.edu/immigration-visas/j-1-2-home

Typically reviewed on Friday mornings except in emergency

Get override and then register for IE6991
One of the last steps to take before receiving your degree is to apply for graduation. Before you apply, you should make an appointment with your academic advisor to ensure you have completed all degree requirements.

How to apply

You must apply for graduation in Academica no later than the end of the fifth week of classes in the semester you plan on graduating. To submit an application, log in to Academica and select Student Resources, then Student Records and then Apply for Degree or Certificate. It is imperative to complete the entire application, finalize payment (if applicable) and submit it or your application will not be processed. A confirmation notice will be sent to your WSU email address within 24 hours of submission.

Important: Please do not use a mobile device such as a tablet or smartphone, as they may cause an error to occur during the payment process. Use of a PC (set to accept all cookies) is highly recommended.

Graduation

Wayne State confers degrees in the winter, spring/summer and fall terms. Graduation ceremonies are held in December and May. Detailed information about applying for the degree and commencement procedures is available on the Commencement Office website.

Degree application

Degree applications are available via Academica on the Student tab, Student Self Service menu.

Application deadline

The deadline for applying is the Friday of the fourth week of class in the semester in which graduation is anticipated.

Caps, gowns, and tickets

Information concerning Commencement announcements, caps and gowns, tickets, and other relevant information will be mailed to the degree candidate by the Commencement Office prior to the event.

If you have any questions, email the graduation office at graduation@wayne.edu or call us at 313-577-2100.
MASTER’S
CONCENTRATIONS

The Department of Industrial and Systems Engineering has a continually expanding master’s program, which is designed to help students excel in both industry and academia. ISE offers the following programs at the master’s level:

Five degree concentrations for the Master of Science in Industrial Engineering (MSIE)

General option (Plan C)
Thesis option (Plan A) - view deadlines
Concentration: Lean systems (Plan C)
Concentration: Analytics (Plan C)
Concentration: Systems engineering (Plan C)

Five degree concentrations for the Master of Science in Manufacturing Engineering (MSMfgE)

General option (Plan C)
Thesis option (Plan A) - view deadlines
Concentration: Smart Mfg (Plan C)
Concentration: Quality Engineering (Plan C)

Master of Science in Engineering Management (MSEM)

General option (Plan B)

Master of Science in Data Science and Business Analytics (MSDSBA)

Business Program - Data-Driven Business Concentration
Engineering Program – Advanced Analytics Concentration
Engineering Program – Data Computing Concentration

Engineering Management Master’s Program (EMMP)

Closed registration. Nomination of Ford Motor Company employees only.

All master’s level students must hold a bachelor’s degree in engineering, or in a closely related analytical discipline. In addition, master’s level students are expected to have a solid quantitative background with demonstrated competencies in probability and statistics.
Program description

The M.S. program in industrial engineering is built on a core designed to provide breadth of experience in systems modeling, analysis, and applications common in industrial engineering and operations analysis.

Program objectives

Graduates will be able to:

- Integrate, model, continuously improve, control, and if necessary redesign, enterprise activities
- Perform data analysis and optimization for enterprise decision making
- Develop business cases for justifying process, organizational and technological projects
- Support enterprise performance, quality, efficiency and productivity enhancement activities
- Facilitate systems engineering and project management
- Communicate effectively (written, verbal and presentation) across all levels in the enterprise
- Develop an ability to grow through life long acquisition of knowledge

Plan of Work

The Plan of Work is intended to assist the student in structuring the course work for the MS degree. Students are urged to discuss their program with the appropriate program coordinator (identified along with the program description). The Plan of Work should be filed in DegreeWorks by all students in the program before completing 12 credits. Students will be notified by the Graduate School regarding the acceptance of the plan. The Plan of Work is a contract that describes all requirements to be met for the degree. The Plan of Work should be treated as a living document. If there are any changes to your program, you must file a revised Plan of Work and receive approval from department graduate program director. Failure to keep your Plan of Work updated can delay graduation. Please choose the appropriate Plan of Work from the list below.

- General option (Plan C)
- Thesis option (Plan A)
- Concentration: Lean Systems (Plan C)
- Concentration: Analytics (Plan C)
- Concentration: Systems Engineering (Plan C)
Industrial Engineering (General)

<table>
<thead>
<tr>
<th>Industrial Engineering (General)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The MS IE General Concentration is designed to provide students with maximum flexibility with regards to elective courses. Students complete three core courses and then have the freedom to create, within the policies of the ISE Master’s program) a course of study that best fits their long-term goals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives & Aims</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To give ISE master’s students core industrial engineering knowledge that is broadly applicable to numerous careers while giving the student the control to design a course of study that is of most interest and best suited to their goals.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prospective Jobs & Industries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All industrial engineering positions [manufacturing, healthcare, analytics, energy, supply chain, etc.]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Course Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9 credits</td>
<td></td>
</tr>
<tr>
<td>* B grade minimum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Course Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IE 6210 Applied Engineering Statistics</td>
</tr>
<tr>
<td></td>
<td>IE 6560 Deterministic Optimization</td>
</tr>
<tr>
<td></td>
<td>IE 6315 Production Systems</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>IE 6490 Introduction to Systems Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration Course Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Course Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21 credits</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Course Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None required, elective courses are based on student interest/goals and can be discussed with student’s program chair.</td>
<td></td>
</tr>
</tbody>
</table>
Industrial Engineering (Thesis)

<table>
<thead>
<tr>
<th>Industrial Engineering (Thesis)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The MS IE Thesis Concentration is designed for master's students looking to pursue academic research opportunities to dive deep into a singular theoretical or practical topic. Master's students interested in this concentration must identify, approach, and obtain a faculty member to advise their MS thesis research credits.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives & Aims</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To give ISE master's students core industrial engineering knowledge while providing an avenue for students to pursue advanced academic research with a faculty member.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prospective Jobs & Industries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All industrial engineering positions [manufacturing, healthcare, analytics, energy, supply chain, etc.]. Performing master's thesis research is highly recommended if students are considering pursuing a PhD in the future.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Course Requirements 9 credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 6210 Applied Engineering Statistics</td>
<td></td>
</tr>
<tr>
<td>IE 6560 Deterministic Optimization</td>
<td></td>
</tr>
<tr>
<td>IE 6315 Production Systems</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>IE 6490 Introduction to Systems Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration Course Requirements 6-8 credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 8999 Master's Thesis Research (6-8 credits required)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Course requirements 13-15 credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None required, elective courses are based on student interest/goals and can be discussed with master's thesis research advisors to identify courses most related to their master's research.</td>
<td></td>
</tr>
</tbody>
</table>
Industrial Engineering (Lean Systems)

Description
Application of Lean Systems for integrated management of organizations in all industrial segments, Manufacturing, Service, Healthcare, and beyond.

Objectives & Aims
Practical application of lean philosophies, tools, principles and practices to systematically improve business performance relative to customer satisfaction, quality, cost efficiency and productivity

Prospective Jobs & Industries
Lean Engineer | Business Process Analyst | Quality Engineer | Manufacturing Engineer | Consultant

Core Course Requirements (9 credits)
* B grade minimum

- IE 6210-Applied Engineering Statistics
- IE 6560-Deterministic Optimization
- IE 6490-Introduction to Systems Engineering
- OR
- IE 6315-Production Systems & Service Systems

REQUIRED: IE 6310-Lean Operations and Manufacturing

- IE 6611 Fundamentals of Six Sigma
- IE 6220 Value Engineering (Value Methodology)
- IE 6430 Computer Simulation Methods
- IE 6442 Facilities Design and Materials Flow
- IE 6255 Quality Engineering
- IE 6325 Supply Chain Management
- IE 6422 Flexible Manufacturing & Service Systems

Concentration Course Requirements (9 credits) from this list

Elective Course Requirements (12 credits)
Elective courses are based on student interest/goals and can be discussed with student’s program chair.
Industrial Engineering (Analytics)

<table>
<thead>
<tr>
<th>Industrial Engineering (Analytics)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The MS IE Analytics Concentration is designed to provide students with a disciplined course of training for applying IE expertise in business analytics. Students complete three core, required courses and select three analytics concentration courses from a prescribed list, then have the freedom to select electives that best fit their career goals.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives & Aims</th>
<th>To give ISE master’s students core industrial engineering knowledge and the needed skills for starting a career in the analytics field where the IE knowledge best applies.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prospective Jobs & Industries</th>
<th>Business analyst, marketing analyst, quantitative analyst positions in insurance, finance, transportation and manufacturing industries as well as in the public services.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Core Course Requirements (9 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 6210 Applied Engineering Statistics</td>
<td></td>
</tr>
<tr>
<td>IE 6560 Deterministic Optimization OR DSA 6200 Operations Research</td>
<td></td>
</tr>
<tr>
<td>IE 6315 Production Systems OR IE 6490 Introduction to Systems Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration Course requirements; select 3 courses (9 credits) from this list</th>
<th>REQUIRED: DSA 6000 Data Science and Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 5800 Intelligent Systems: Algorithms & Tools</td>
<td>IE 7860 Intelligent Analytics</td>
</tr>
<tr>
<td>IE 7511 Linear & Non-Linear Optimization</td>
<td></td>
</tr>
<tr>
<td>CSC 6710 Database Management Systems I</td>
<td></td>
</tr>
<tr>
<td>IE 7535 Stochastic Programming & Robust Optimization</td>
<td></td>
</tr>
<tr>
<td>MAT 5750 Mathematics of Finance</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Course requirements (12 credits)</th>
<th>None required, elective courses are based on student interest/goals and can be discussed with student’s program chair.</th>
</tr>
</thead>
</table>

Industrial Engineering (Systems Engineering)

Objectives & Aims

To give ISE master's students core industrial engineering knowledge that is broadly applicable to numerous careers while giving the student the control to design a course of study that is of most interest and best suited to their goals.

Prospective Jobs & Industries

All industrial engineering positions [manufacturing, healthcare, analytics, energy, supply chain, etc.]

Core Course Requirements (9 credits)

- IE 6210 Applied Engineering Statistics
- IE 6560 Deterministic Optimization
- IE 6315 Production Systems
- OR
- IE 6490 Introduction to Systems Engineering

* B grade minimum

Concentration Course requirements (9 credits)

Choose Three of the following:

- IE 6840 Project Management
- IE 6405 Integrated Product Development
- IE 6720 Engineering Risk and Decision Analysis
- IE 6270 Engineering Experimental Design
- IE 6220 Value Engineering
- IE 6240 Quality Management Systems

Elective Course requirements (12 credits)

None required, elective courses are based on student interest/goals and can be discussed with student’s program chair.
MANUFACTURING ENGINEERING

Program description

The M.S. degree program in manufacturing engineering is built on a core designed to provide a firm foundation in the various elements of manufacturing and systems engineering. Building on this preparation, the student constructs a concentration in one of five areas.

Program objectives

Graduates will be able to:

- Understand and integrate the design, test and build product life cycle
- Model, analyze and control design and production activities
- Understand the impact of quality, cost and timeliness metrics on manufacturing performance
- Demonstrate a basic understanding of manufacturing processes and technologies
- Perform data analysis and optimization for decision making
- Develop business cases for justifying process, organizational and technological projects
- Support for systems engineering and project management
- Communicate effectively (written, verbal and presentation) across all levels in the enterprise
- Develop an ability to grow through life long acquisition of knowledge

Plan of Work

The Plan of Work is intended to assist the student in structuring the course work for the MS degree. Students are urged to discuss their program with the appropriate program coordinator (identified along with the program description). The Plan of Work should be filed in DegreeWorks by all students in the program before completing 12 credits. Students will be notified by the Graduate School regarding the acceptance of the plan. The Plan of Work is a contract that describes all requirements to be met for the degree. The Plan of Work should be treated as a living document. If there are any changes to your program, you must file a revised Plan of Work and receive approval from department graduate program director. Failure to keep your Plan of Work updated can delay graduation. Please choose the appropriate Plan of Work from the list below.

General option (Plan C)
Thesis option (Plan A)
Concentration: Advanced Manufacturing Systems (Plan C)
Concentration: Quality Engineering (Plan C)
Concentration: SMART Manufacturing Systems (Plan C)
Manufacturing Engineering (General)

Objectives & Aims
To give ISE master's students core manufacturing engineering knowledge that is broadly applicable to numerous careers while giving the student the control to design a course of study that is of most interest and best suited to their goals.

Prospective Jobs & Industries
All industrial engineering positions [manufacturing, quality, analytics, energy, supply chain, etc.].

Core Course Requirements (12 credits)

<table>
<thead>
<tr>
<th>Description</th>
<th>IE 6210 Applied Engineering Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IE 6315 Production Systems & Service Systems</td>
</tr>
<tr>
<td></td>
<td>IE 6240 Quality Management Systems</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>IE 6611 Fundamentals of Six Sigma</td>
</tr>
<tr>
<td></td>
<td>IE 6405 Integrated Product Development</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>IE 6420 CAD/CAM</td>
</tr>
</tbody>
</table>

* B grade minimum

Concentration Course requirements
None

Elective Course requirements (18 credits)
Elective courses are based on student interest/goals and can be discussed with student's program chair.
Manufacturing Engineering (Thesis)

<table>
<thead>
<tr>
<th>Manufacturing Engineering (Thesis)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The MS MfgE Thesis Concentration is designed for master’s student looking to pursue academic research opportunities to dive deep into a singular theoretical or practical topic. Master’s students interested in this concentration must identify, approach, and obtain a faculty member to advise their MS thesis research credits.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives & Aims</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>To give ISE master’s students core manufacturing engineering knowledge while providing an avenue for students to pursue advanced academic research with a faculty member.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prospective Jobs & Industries</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All industrial engineering positions [manufacturing, quality, analytics, energy, supply chain, etc.]. Performing master’s thesis research is highly recommended if students are considering pursuing a PhD in the future.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core Course Requirements (9 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* B grade minimum</td>
<td>IE 6210 Applied Engineering Statistics</td>
</tr>
<tr>
<td></td>
<td>IE 6315 Production Systems & Service Systems</td>
</tr>
<tr>
<td></td>
<td>IE 6405 Integrated Product Development</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>IE 6420 CAD/CAM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration Course Requirements (6-8 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IE 8999 Master’s Thesis Research (6-8 credits required)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Course requirements 13-15 credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None required, elective courses are based on student interest/goals and can be discussed with master’s thesis research advisors to identify courses most related to their master’s research.</td>
<td></td>
</tr>
</tbody>
</table>
Manufacturing Engineering (SMART Manufacturing)

<table>
<thead>
<tr>
<th>Manufacturing Engineering (SMART Manufacturing)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The MS MfgE Smart Manufacturing Engineering Concentration is designed for master’s student to have knowledge and experience in Smart Manufacturing. Smart Manufacturing refers to a current trend, in which production activities (e.g., manufacturing, value network, distribution, business, customer service, etc.) are ‘highly automated and intelligent’ and ‘decentralized and mutually connected’. Smart manufacturing is currently embraced by industry stakeholders to integrate manufacturing assets that support mass-customized production. The efficiency of smart manufacturing has been demonstrated by flexible manufacturing cell systems equipped with computer-integrated intelligent manufacturing.</td>
<td></td>
</tr>
</tbody>
</table>

| Objectives & Aims | To give ISE master’s students advanced manufacturing engineering knowledge while providing an avenue for students to pursue industry career in the track of smart manufacturing. |

| Prospective Jobs & Industries | Current manufacturing engineering positions [manufacturing, quality, analytics, artificial intelligence, automotive, energy, supply chain, etc.]. |

| Core Course Requirements (9 credits) | IE 6210 Applied Engineering Statistics
IE 6315 Production Systems & Service Systems
IE 6405 Integrated Product Development OR
IE 6420 CAD/CAM |

| * B grade minimum |

| Concentration Course Requirements (9 credits) |
REQUIRED: IE 6000 Digital Automation
IE 6425 Product Lifecycle Management and Sustainable Design
IE 6430 Computer Simulation Methods
IE 6435 Fundamentals of Sustainable Manufacturing
IE 6510 Information Systems for the Manufacturing Enterprise |

| Elective Course requirements (12 Credits) | Elective courses are based on student interest/goals and can be discussed with student’s program chair. |
Manufacturing Engineering (Quality Engineering)

<table>
<thead>
<tr>
<th>Manufacturing Engineering (Quality Engineering)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The MS IE Quality Engineering Concentration is designed to equip master’s students with a firm foundation on various elements of quality management and engineering. Students are required to take three core courses, three concentration courses, and 12 credits of electives to complete the program.</td>
</tr>
</tbody>
</table>

| Objectives & Aims | To provide a focused core on quality engineering that develop abilities for performing a variety of tasks in this concentration that include management of quality standards, coordination of quality assurance activities, control and monitoring for design and production systems, and implementation of six-sigma quality improvement programs. |

| Prospective Jobs & Industries | All industrial engineering positions [manufacturing, healthcare, analytics, energy, supply chain, etc.] with a particular emphasis on manufacturing. Prospective jobs include Quality Manager, Quality Department Supervisor, QS/ISO Auditor, Six Sigma Consultant, Quality Standards Trainer/Consultant, and Continuous Improvement Coordinator. |

<table>
<thead>
<tr>
<th>Core Course Requirements (9 credits)</th>
<th>IE 6210 Applied Engineering Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IE 6315 Production & Service Systems</td>
</tr>
<tr>
<td></td>
<td>IE 6405 Integrated Product Development</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>IE 6420 Computer Aided manufacturing and Lab</td>
</tr>
</tbody>
</table>

Concentration Course Requirements (9 credits)	IE 6611 Fundamentals of Six Sigma
	IE 6270 Engineering Experimental Design
	IE 6310 Lean Operations and Manufacturing

| Elective Course requirements (12 credits) | None required, elective courses are based on student interest/goals and can be discussed with student’s program chair. |
Manufacturing Engineering (Adv. Manufacturing Systems)

Description
The MS Mfg Advanced Manufacturing Concentration provides the MS students with the skills to implement and develop cutting-edge manufacturing techniques for a wide array of industries and applications. Students are required to take three core courses, three concentration courses, and 12 credits of electives to complete the program.

Objectives & Aims
To provide a focused core on advanced manufacturing that develop abilities for performing a variety of tasks in this concentration that include automation engineering, predictive and prescriptive modeling, production and service systems modeling and control, and analysis of complex manufacturing systems.

Prospective Jobs & Industries
All industrial engineering positions [manufacturing, healthcare, analytics, energy, supply chain, etc.] with a particular emphasis on manufacturing. Prospective jobs include Manufacturing Systems Engineer, Plant Manager, Technical Consultant, Automation Engineer.

Core Course Requirements (9 credits)
- IE 6210 Applied Engineering Statistics
- IE 6315 Production & Service Systems
- IE 6405 Integrated Product Development
- OR
- IE 6420 Computer Aided Manufacturing and Lab

REQUIRED: IE 7445 Manufacturing Analytics

Choose at least 2 from the following:
- IE 6000 Digital Automation
- IE 6425 Product Lifecycle Management and Sustainable Design
- IE 6442 Facilities Design and Materials Flow
- IE 6422 Flexible Manufacturing & Service Systems
- IE 7435 Modeling Re-Manufacturing Systems
- ME 5995 Additive Manufacturing - Principles and Automation

Concentration Course Requirements (9 credits)

Elective Course Requirements (12 credits)
None required, elective courses are based on student interest/goals and can be discussed with student’s program chair.
Program description

The M.S. degree program in engineering management is designed to build both technical competence and business acumen. The program builds understanding and skills critical to the support of fast-to-market strategies, which also guarantee product quality and cost minimization. A systematic analytical framework is developed and coupled with tools for managing the engineering and technical functions within manufacturing-based companies.

This cross-disciplinary program draws from the expertise of the College of Engineering and School of Business Administration, and develops the engineering leader who is responsible for designing and implementing strategies to successfully compete in the 21st century.

The degree program is a 36-credit degree program. The program includes 18 credits of engineering courses and 6 credits of business administration course. The final 12 credits can be completed in two different ways: 1) engineering and business electives (12 credits) or 2) Project at a company (6 credits) plus engineering electives (6 credits).

Program objectives

Graduates will be able to:

- Understand and integrate the design, test and build product life cycle
- Model, analyze and control design and production activities
- Understand the impact of quality, cost and timeliness metrics on manufacturing performance
- Demonstrate a basic understanding of manufacturing processes and technologies
- Perform data analysis and optimization for decision making
- Develop business cases for justifying process, organizational and technological projects
- Support for systems engineering and project management
- Communicate effectively (written, verbal and presentation) across all levels in the enterprise
- Develop an ability to grow through life long acquisition of knowledge

Plan of Work

The Plan of Work is intended to assist the student in structuring the course work for the MS degree. Students are urged to discuss their program with the appropriate program coordinator (identified along with the program description). The Plan of Work should be filed in DegreeWorks by all students in the program before completing 12 credits. Students will be notified by the Graduate School regarding the acceptance of the plan. The Plan of Work is a contract that describes all requirements to be met for the degree. The Plan of Work should be treated as a living document. If there are any changes to your program, you must file a revised Plan of Work and receive approval from department graduate program director. Failure to keep your Plan of Work updated can delay graduation.
Engineering Management

Objectives & Aims

To give ISE master’s students core industrial engineering knowledge that is broadly applicable to numerous careers while giving the student the control to design a course of study that is of most interest and best suited to their goals.

Prospective Jobs & Industries

All management positions within the Engineering Industry.

Core Course Requirements (18 credits)

- IE 6310 Lean Operations / Manufacturing
- IE 6560 Deterministic Optimization
- IE 6840 Project Management
- IE 6720 Engineering Risk & Decision Analysis
- IE 6830 Management of Technology Change

(At least) One course of the following:

- IE 6240 Quality Management
- IE 6610 Introduction to Six Sigma

Concentration Course requirements (9 credits)

- *B grade minimum*

Elective Course requirements (12 Credits)

- *B grade minimum*

REQUIRED:

- BA 6000 Intro to Accounting and Financial Reporting
- BA 6005 Financial Management
- BA 6015 Marketing
- BA 6020 Contemporary Principles of Management

Option 1: 9 Credits of IE Elective Course + 3 Credits of IE or Business Elective Courses.

Option 2: Project at Your Company + 3 Credits of IE Elective Courses + 3 Credits of IE or Business Elective Courses
Program description

The Mike Ilitch School of Business and College of Engineering have developed a novel Interdisciplinary Master of Science in Data Science and Business Analytics program, which is designed to help students excel in both industry and academia.

When applying to the program, applicants will have to select which Program and Major Concentration they want to apply for:

Data Science and Business Analytics – Advanced Analytics Concentration - Housed in Industrial Engineering Department

Data Science and Business Analytics – Data-Driven Business Concentration - Housed in the Mike Ilitch School of Business

Data Science and Business Analytics – Data Computing Concentration - Housed in Computer Science Department

Data Science and Business Analytics – Statistics Concentration - Housed in Mathematics Department

To learn more about the details of our curriculum or major concentrations, please review the curriculum page.

If you are interested in applying to the Master of Science in Data Science and Business Analytics Program, please first review our Admission Requirements, then click Apply to learn about the application process and to begin your application. It is important to note that the DSBA program in particular has a slightly different set of admission requirements, so please review them carefully.

Program Learning Objectives

- Critical Thinking - Students will be able to produce accurate and timely insights from large quantities of data using data science and analytics techniques.

- Communication - Students will be able to communicate analytics problems, methods, and findings effectively after considering the relevant audience (technical vs. non-technical stakeholders), situation, and purpose of the communication.

- Technical Skills - Students will be able to use technical skills in predictive and prescriptive modeling to support/drive decision-making.

- Data Analysis Life Cycle - Students will be able to employ the data analysis life cycle to find effective solutions to computing challenges in analytical projects.

- Teamwork & Collaboration - Students collaborate productively with others to accomplish established goals.
Data Science and Business Analytics (Advanced Analytics)

Data Science and Business Analytics

Description
This novel Master's program is designed to provide students with a broad range of data science and business analytics knowledge and skills. The Master of Science in Data Science and Business Analytics program requires completion of 30 credit hours: 9 credits in Core Courses, 9 credits in Concentration Courses, 6 credits in Elective Courses, and 6 credits in the Practicum Course. See curriculum page.

Objectives & Aims
For three years in a row, data scientist has been named the number one job in the U.S. by Glassdoor. What’s more, the U.S. Bureau of Labor Statistics reports that the rise of data science needs will create 11.5 million job openings by 2026. We aim to prepare the best data scientists to fill this gap.

Prospective Jobs & Industries
Business Intelligence Developer, Data Architect, Applications Architect, Infrastructure Architect, Enterprose Architect, Data Scientist, Data Analyst, Data Engineer, Machine Learning Engineer, Statistician

Core Course Requirements (9 credits)
- DSA 6000 Data Science & Analytics *
- DSB 6000 Data Science Strategy & Leadership *
- DSE 6000 Computing Platforms for Data Science

Concentration Course Requirements (9 credits)
- CSC 5825 Introduction to Machine Learning & Apps
 *Students with technical backgrounds consider taking CSC 7825.
- CSC 7810 Data Mining: Algorithms and Applications
- CSC 7991 Special Topics: Introduction to Deep Learning
- IE 7860 Intelligent Analytics

Pre-Requisite
DSE 5070 Intro: Data Computing & Programming

Required: (choose two)
- CSC 5825 Introduction to Machine Learning & Apps
 *Students with technical backgrounds consider taking CSC 7825.
- CSC 7810 Data Mining: Algorithms and Applications
- CSC 7991 Special Topics: Introduction to Deep Learning
- IE 7860 Intelligent Analytics

Required: (choose one)
- DSA 6100 Statistical Methods for Data Science & Analytics
- DSA 6200 Operations Research
- DSA 6300 Decision Analysis & Simulation

Practicum (6 credits) & Elective Courses (6 Credits)
- DSA 7500 Practicum

Students may choose elective courses from the approved elective list or from the concentration courses in another track. Courses outside these options must be approved by the Concentration Director. Departmental approval is required to enroll in the practicum course in the Spring/Summer term.

MS Programs Handbook #41
Class, Belt & Methodology

TRACKING MATRIX

<table>
<thead>
<tr>
<th>Methodologies</th>
<th>Six Sigma</th>
<th>Design for Six Sigma</th>
<th>Lean</th>
<th>Value Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic (A) / Project (P)</td>
<td>A</td>
<td>P</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>Yellow Belt</td>
<td>IE 6611**</td>
<td>Project</td>
<td>N/A</td>
<td>IE 6611**</td>
</tr>
<tr>
<td>Green Belt</td>
<td>PRE (IE 4260 or 6210) 6210 Group Survey Project</td>
<td>IE 6611 Group Survey Project</td>
<td>PRE (IE 4260 or 6210) 6210 Group Survey Project</td>
<td>IE 6611 Group Survey Project</td>
</tr>
<tr>
<td>Black Belt</td>
<td>IE 6220 (1 of 3 Stat Courses)</td>
<td>IE 6620 Project</td>
<td>IE 6620</td>
<td>IE 6620 Project</td>
</tr>
<tr>
<td>Master Black Belt</td>
<td>ALL BB</td>
<td>Symposium</td>
<td>ALL BB</td>
<td>Symposium</td>
</tr>
</tbody>
</table>

* = Add Non-Parametrics Course (IE 6290)

** = Open to all Departments and Undergraduates

FOR BLACK BELTS AND MASTER BLACK BELTS: PASSING OF CERTIFICATION TEST IS NECESSARY!

IE 6220 - Value Engineering

IE 4260 - Principles of Quality Control: **Prerequisite: BE 2100**

IE 6210 - Applied Engineering Statistics: **Prerequisite: BE 2100**

IE 6310 - Lean Ops and Manufacturing: **Prerequisite: BE 2100**

IE 6610 - Introduction to Six Sigma

IE 6255 - Quality Engineering: **Prerequisite: IE 6210**

IE 6671 - Fundamentals of Six Sigma

IE 6270 - Design and Analysis of Engineering Experiments
What are the responsibilities of the UG Advisor for graduate students?

· Maintains plans of work after they have been approved by the graduate advisor; **PLEASE SEND THEM TO DR. KIM OR DR. RICKLI DEPENDING UPON WHICH PROGRAM YOU ARE IN, THEY WILL APPROVE AND FORWARD TO ME; DO NOT SEND ADVISOR A COPY.**

· Makes status changes from applicant masters to candidate masters once the plans of work have been approved. **ALL exceptions and changes to the plan of work must be approved by the graduate advisor. At this time your plans of work holds will be released.**

· Process transfer credit documents after you have completed the appropriate documents and have affixed the unofficial/or official transcript. Program officer has to approve which classes can be transferred.

· Provides course overrides (**ALL closed class overrides must be granted permission by the instructor before contacting advisor, under ANY circumstances advisor is UNABLE to process them w/o the written permission of the instructor**); all override requests should be in writing (via email) and include your name, ID, course name and the CRN. Students are responsible for registering for the courses, advisors cannot register a student at any time, no exceptions. All late add overrides must have written approval via appropriate forms, obtained either online or outside of advisor office door in the plastic holders.

· Maintains Directed Study documents; you must register for the directed study under the appropriate instructor.

· Process CPT/OPT documents after they have been approved (advisor must receive the CPT document, offer letter and approved, revised plan of work w/ the internship course, IE 6991 added for the appropriate semester).

· Releases academic probation holds after the student has met with the graduate advisor (**Advisor not authorized to release financial or holds of any kind placed by another department under any circumstances**).

· Certifies degrees.

· Forwards employment opportunities via email but CANNOT find or provide employment for students.
What if I have admissions or application concerns?
The Graduate Program Coordinator can assist prospective students in their application process and address incoming students’ general questions and concerns on WSU procedures and policies. Please email engineeringgradadmissions@eng.wayne.edu for related assistance.

Do I need to schedule a meeting with the graduate program chair?
No. Neither Dr. Kim or Dr. Rickli have a secretary so please do not ask the advisor to schedule an appointment with them, email the program chair directly, as they are the only ones who know their schedule.

Are scholarships available?
Funding opportunities are published on the Graduate School’s website, and new scholarship opportunities are periodically announced via email or the College of Engineering website. Scholarships may be awarded based on an admissions application, contingent on availability of funds. Assistantship opportunities are limited and primarily offered to Ph.D. students.

What is the cost of the program?
Information and resources to calculate tuition and fees are available on the Office of the Registrar’s website. Information on billing and payment is available via the Office of the Bursar.

What are the requirements for international students?
Please find detailed information on international student requirements on the Graduate School’s website and the Office of International Students and Scholars website.

What if I need to change degrees?
There is a specific graduate degree change form for students who have already been admitted into the graduate school. The form can be found at: https://wayne.edu/admissions/pdf/changeofstatus.pdf

What if I have a circumstance that requires an exception?
Any and all exceptions to any policies must be approved by Dr. Kim or Dr. Rickli. Please read the this entire graduate student handbook, as it is your roadmap to success and answers many questions.
GET IN TOUCH WITH US!

ise.wayne.edu
4815 Fourth Street, Detroit, MI 48202
Phone: 313-577-3821
Email: engadmissions@wayne.edu