
Section 003
Winter 2016
MW 11:45AM-1:10PM
0331 State Hall

Instructor:
Name: Professor Nathan Fisher
Office address: 5057 Woodward Avenue, Rm. 14101.1 (14th Floor)
Office hours: 10:30-11:30 am, Mondays & Wednesdays; or by appointment
Phone: (313) 577-5421
Email: fishern@wayne.edu

Course Description:
- **Graduate Bulletin Description:** Discussion of current research papers in the fields.
- **Section-Specific Description:** The engineering and design of cyber-physical systems (CPS) requires integrated consideration of both the physical world in which the system operates and the computational world which determines (via algorithms) how the system will interact with the physical world. Automotive systems are an example of CPS. (Others include smart grids, medical devices, etc.). In an automotive system, embedded electronic control units (ECUs) tightly control the mixture of fuel and air into the combustion chamber and the timing of the fuel ignition. However, engine control is just one of a very large number of CPS-enabled features in a modern automobile (other examples include lane-departure warning systems, autonomous driving features, etc.). While each of these new features potentially improves the safety/efficiency of the vehicle, their introduction requires the vehicle to be equipped with additional new hardware (e.g., cameras, sensors, ECUs, …), software, and communication cabling. This explosion of features creates tremendous challenge for system designers to incorporate all these new features and demands while ensuring that the size, weight, and power (SWaP) of the vehicle remain low to ensure fuel/battery efficiency and minimize the cost of manufacturing.

In this course, we explore and discuss cutting edge research on the real-time scheduling aspect of such CPS. In real-time scheduling, each computation has associated temporal constraints (e.g., a job must complete by an associated deadline). A violation of a temporal constraint in a real-time system could have potentially catastrophic implications; thus, systems must be verified at design-time to ensure they satisfy all
Upon successful completion of this class, the student will be able to:

Supplementary information for the course is available at http://blackboard.wayne.edu. Log on with your Access ID for class notes, lecture slides, class announcements, the course syllabus, and other information for the course.

Credit Hours: 3 Credit Hours (Lecture)

Prerequisite: A basic background in discrete math, algorithm analysis, operating systems, and data structures will be assumed. Knowledge of real-time or embedded systems is preferred but not required. Email instructor for details and written permission to register.

Required Reading: Research papers will assigned throughout the semester and posted on Blackboard. Check the course Blackboard site for details and a reading schedule. It is expected that students will have read the assigned material prior to lecture and will be prepared to discuss the material.

(Optional) Textbooks:

Course contents: In this seminar course, we focus on the above challenges outlined in the Course Description above and other related challenges. In particular, we will investigate adaptive variable-rate tasks, thermal/energy-aware scheduling, hybrid simulation, model-based design, among other topics. Students will be strongly encouraged to incorporate their own research into a course project.

A schedule of topics and reading assignments may be found on the Blackboard website. Please check this site often for any changes to the schedule or announcements.

Course Learning Objectives:

Prof. Nathan Fisher
CSC 8260, Winter 2016
<table>
<thead>
<tr>
<th>#</th>
<th>CSC 8260 Course learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Define the key challenges in the design of temporally correct cyber-physical systems.</td>
</tr>
<tr>
<td>2</td>
<td>Identify and locate relevant research literature on real-time scheduling for cyber-physical systems.</td>
</tr>
<tr>
<td>3</td>
<td>Critique and analyze current research papers on real-time scheduling for cyber-physical systems.</td>
</tr>
<tr>
<td>4</td>
<td>Lead a classroom discussion on a topic related to real-time scheduling for cyber-physical systems.</td>
</tr>
<tr>
<td>5</td>
<td>Develop original analytical, experimental, or system implementation results for real-time cyber-physical systems that extend current state-of-the-art.</td>
</tr>
</tbody>
</table>

Assessment:

Attendance & Class-Discussion Participation 15%
Paper Presentation & Discussion (3-4 papers per student) 30%
Class-Project Presentation 15%
Class-Project Technical Report 40%

Grading Scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>95 - 100%</td>
</tr>
<tr>
<td>B+</td>
<td>87 - 89%</td>
</tr>
<tr>
<td>B</td>
<td>83 - 86%</td>
</tr>
<tr>
<td>C</td>
<td>70 - 76%</td>
</tr>
<tr>
<td>C+</td>
<td>77 - 79%</td>
</tr>
<tr>
<td>B-</td>
<td>80 - 82%</td>
</tr>
<tr>
<td>F</td>
<td>69 or below</td>
</tr>
</tbody>
</table>

Homework & Exams:

There will be no homework assignments or exams for this course; grades are based on attendance/participation, presentations, and class project.

Class Participation: Attendance is required for this course. I understand that excused absences are occasionally necessary; however, I request that you inform me of your absence prior to the missed lecture either by email or in-person.

A course in which students actively participate in the discussion of ideas is always much more enjoyable and stimulating. In fact, 15% of your grade is determined by participation in the class discussions. Students who routinely participate in class will receive full marks for this portion of the grade. However, I also reserve the right to deduct points for those who routinely do not participate in discussion, come to class late, use their phone/tablets/laptop for non-course related activities, or sleep in class, text etc.

Reading Presentation: Each student will be required to present at least three (depending upon the course enrollment) research papers from a real-time, embedded systems, and/or CPS conference or journal. Each student will choose a paper from a real-time-related conference or journal (approved by me). A sign-up sheet will also be circulated early in the semester. Each presentation will be evaluated on quality of summary, student's grasp of topic, ability to lead
discussion and handle questions, and presentation style. *Please note that each presentation assignment is for the entire lecture; therefore, you must prepare enough material for the full lecture time (i.e., one hour and 25 minutes).*

Class Project: A significant portion of the course grade is the required class project. In this course, you will be responsible for designing your own project. Your project can be either an experimental investigation or a research project on an open topic in real-time CPS. The project must be a fairly significant piece of work. It is acceptable to use research from a current GRA or research position as the basis for your class project. However, your project may not be based on work from another course without the permission of me and the instructor for the other course (permission will be granted only if the total work involved is commensurate with the amount of effort expected in both courses combined). Two-person projects may be permitted, provided the total work involved is about twice that of the typical single-person project.

The components of the class project that will be graded are a class presentation and a technical report describing the project. The class presentation will occur during the last or second to last week of classes. The technical report of the project will be due during finals week. In addition, each student will be required to submit an initial informal project proposal early in the semester, and a more detailed project proposal later. Details on class projects will be discussed in greater detail during the second or third week of class.

Religious Holidays: Because of the extraordinary variety of religious affiliations of the University student body and staff, the Academic Calendar makes no provisions for religious holidays. However, it is University policy to respect the faith and religious obligations of the individual. Students with classes or examinations that conflict with their religious observances are expected to notify their instructors well in advance so that mutually agreeable alternatives may be worked out.

Student Disabilities Services:

- If you have a documented disability that requires accommodations, you will need to register with Student Disability Services for coordination of your academic accommodations. The Student Disability Services (SDS) office is located in the Adamany Undergraduate Library. The SDS telephone number is 313-577-1851 or 313-202-4216 (Videophone use only). Once your accommodation is in place, someone can meet with you privately to discuss your special needs. Student Disability Services' mission is to assist the university in creating an accessible community where students with disabilities have an equal opportunity to fully participate in their educational experience at Wayne State University.

- Students who are registered with Student Disability Services and who are eligible for alternate testing accommodations such as extended test time and/or a distraction-reduced environment should present the required test permit to the professor at least one week in advance of the exam. Federal law requires that a student registered with SDS is entitled to the reasonable accommodations specified in the student’s accommodation letter, which might include allowing the student to take the final exam on a day different than the rest of the class.
Academic Dishonesty - Plagiarism and Cheating: Academic misbehavior means any activity that tends to compromise the academic integrity of the institution or subvert the education process. All forms of academic misbehavior are prohibited at Wayne State University, as outlined in the Student Code of Conduct (http://www.dso.wayne.edu/student-conduct-services.html). Students who commit or assist in committing dishonest acts are subject to downgrading (to a failing grade for the test, paper, or other course-related activity in question, or for the entire course) and/or additional sanctions as described in the Student Code of Conduct.

- **Cheating:** Intentionally using or attempting to use, or intentionally providing or attempting to provide, unauthorized materials, information or assistance in any academic exercise. Examples include: (a) copying from another student’s test paper; (b) allowing another student to copy from a test paper; (c) using unauthorized material such as a "cheat sheet" during an exam.

- **Fabrication:** Intentional and unauthorized falsification of any information or citation. Examples include: (a) citation of information not taken from the source indicated; (b) listing sources in a bibliography not used in a research paper.

- **Plagiarism:** To take and use another’s words or ideas as one’s own. Examples include: (a) failure to use appropriate referencing when using the words or ideas of other persons; (b) altering the language, paraphrasing, omitting, rearranging, or forming new combinations of words in an attempt to make the thoughts of another appear as your own.

- **Other** forms of academic misbehavior include, but are not limited to: (a) unauthorized use of resources, or any attempt to limit another student’s access to educational resources, or any attempt to alter equipment so as to lead to an incorrect answer for subsequent users; (b) enlisting the assistance of a substitute in the taking of examinations; (c) violating course rules as defined in the course syllabus or other written information provided to the student; (d) selling, buying or stealing all or part of an un-administered test or answers to the test; (e) changing or altering a grade on a test or other academic grade records.

Course Drops and Withdrawals: In the first two weeks of the (full) term, students can drop this class and receive 100% tuition and course fee cancellation. After the end of the second week there is no tuition or fee cancellation. Students who wish to withdraw from the class can initiate a withdrawal request on Pipeline. You will receive a transcript notation of WP (passing), WF (failing), or WN (no graded work) at the time of withdrawal. No withdrawals can be initiated after the end of the tenth week. Students enrolled in the 10th week and beyond will receive a grade. Because withdrawing from courses may have negative academic and financial consequences, students considering course withdrawal should make sure they fully understand all the consequences before taking this step. More information on this can be found at: http://reg.wayne.edu/pdf-policies/students.pdf

Student services:

- The Academic Success Center (1600 Undergraduate Library) assists students with content in select courses and in strengthening study skills. Visit www.success.wayne.edu for schedules and information on study skills workshops, tutoring and supplemental instruction (primarily in 1000 and 2000 level courses).
The Writing Center is located on the 2nd floor of the Undergraduate Library and provides individual tutoring consultations free of charge. Visit http://clasweb.clas.wayne.edu/writing to obtain information on tutors, appointments, and the type of help they can provide.

Class recordings: Students need prior written permission from the instructor before recording any portion of this class. If permission is granted, the audio and/or video recording is to be used only for the student’s personal instructional use. Such recordings are not intended for a wider public audience, such as postings to the internet or sharing with others. Students registered with Student Disabilities Services (SDS) who wish to record class materials must present their specific accommodation to the instructor, who will subsequently comply with the request unless there is some specific reason why s/he cannot, such as discussion of confidential or protected information.