Howard Matthew

Howard Matthew

Professor, Chemical Engineering and Materials Science


Howard Matthew


Research Interests

  • Tissue Engineering of Cardiovascular, Bone and Liver Systems
  • Polymeric Biomaterials: Natural & Synthetic
  • Stem Cells for Regenerative Medicine
  • Modular Tissue Engineering for Assembly of Transplantable Vascularized Tissue
  • 3D Tissue Models for In Vitro Metabolic Studies

Our research is focused on the application of biologically-active polysaccharide materials and adult stem cells to problems in tissue engineering and regenerative medicine.  Materials of particular interest, include chitosan and the glycosaminoglycans (GAGs).  We are currently examining their use as components of tissue scaffolds and bioactive surfaces in a number of tissue regeneration  and tissue modeling projects.

Modular Tissue Engineering

We have developed modular materials platforms, based on polyelectrolyte microcapsules, that allow the rapid assembly of vascularized, 3D tissues in vitro. These pre-vascularized tissues can be transplanted and exhibit accelerated angiogenesis and integration with the host vasculature.  Current application targets include engineering of regeneration approaches for bone and liver tissue.

Heart Valves & Large Blood Vessels for Pediatric Patients

In collaboration with the Childrens Hospital of Michigan, we are engineering transplantable heart valve tissue with the goal of reducing the number of surgies needed for replacement of defective heart valves and vessels in newborns.  Modified chitosan is being used as the foundation for heart valve tissue scaffolds.  The ultimate goal is to implant a living valve derived from the patients own tissue, that can grow and adapt as the child grows.  

Liver Regeneration via Hepatocyte Transplantation

There is a current need to expand the quantity of liver tissue available for transplantation. We are developing technology to allow transplantation of hepatocytes and to facilitate their assembly and growth into a functional organ. Tissue engineering of implantable liver systems is limited in part by the high metabolism of this tissue and slow blood vessel growth in vivo. We are using computational fluid dynamic (CFD) modeling to design scaffolds that provide supplemental oxygenation of the incorporated cells in the short term and enhanced angiogenesis in the long term.

Expansion and Differentiation of Hematopoietic Stem Cells

Hematopoietic Stem Cells (HSCs) are needed for restoration of bone marrow function and various cancer therapies. In our laboratory, synergism between matrix factors and cytokines is being studied to manipulate the balance between stem cell and growth and differentiation. Results are incorporated into perfusion bioreactor systems for high yield expansion of either HSCs or therapeutically valuable blood cells.


  • Miles KB, Maerz T, Matthew HWT Scalable MSC-Derived Bone Tissue Modules: In Vitro Assessment of Differentiation, Matrix Deposition, and Compressive Load Bearing. Acta Biomaterialia 2019, 95: 395-407 (DOI: 10.1016/j.actbio.2019.01.014).
  • Tiruvannamalai-Annamalai R., Matthew H.W.T. Transport Analysis of Engineered Liver Tissue Fabricated Using a Capsule-Based, Modular Approach. Annals of Biomedical Engineering 2019, 47: 1223–1236 (DOI: 10.1007/s10439-018-02192-y).
  • Alzebdeh D.A. and Matthew H.W.T. Metabolic Oscillations in Co-cultures of Hepatocytes and Mesenchymal Stem Cells: Effects of Seeding Arrangement and Culture Mixing. Journal of Cellular Biochemistry 2017 118: 3003–3015 (DOI: 10.1002/jcb.25962).
  • Robu I.S., Walters III H.L., Matthew H.W.T. Morphological and Growth Responses of Vascular Smooth Muscle and Endothelial Cells Cultured on Immobilized Heparin and Dextran Sulfate Surfaces. Journal of Biomedical Materials Research, Part A 2017, 105A: 1725–1735, (DOI: 10.1002/jbm.a.36037)..
  • Chen L., Song W., Markel D.C., Shi T., Muzik O., Matthew H., Ren W. Flow Perfusion Culture of MC3T3-E1 Osteogenic Cells on Gradient Calcium Polyphosphate Scaffolds with Different Pore Sizes. Journal of Biomaterial Applications 2015 (DOI: 10.1177/0885328215608335).
  • Miles K.B., Ball R.L., Matthew H.W.T.  Chitosan Films with Improved Tensile Strength and Toughness from N-Acetyl-Cysteine Mediated Disulfide Bonds.  Carbohydrate Polymers 2016, 139: 1-9  (DOI:10.1016/j.carbpol.2015.11.052).
  • Chen L., Song W., Markel D.C., Shi T., Muzik O., Matthew H., Ren W.  Flow Perfusion Culture of MC3T3-E1 Osteogenic Cells on Gradient Calcium Polyphosphate Scaffolds with Different Pore Sizes.  Journal of Biomaterial Applications 2015 (DOI: 10.1177/0885328215608335).
  • Maerz T., Kurdziel M., Newton M.D., Altman P., Anderson K., Matthew H.W.T., Baker K.C.  Subchondral and Epiphyseal Bone Remodeling following Surgical Transection and Noninvasive Rupture of the Anterior Cruciate Ligament as Models of Post-Traumatic Osteoarthritis.  Osteoarthritis and Cartilage 2015 (in press) (DOI: 10.1016/j.joca.2015.11.005).
  • Maerz T., Newton M.D., Matthew H.W.T., Baker K.C.  Surface Roughness and Thickness Analysis of Contrast-Enhanced Articular Cartilage Using Mesh Parameterization.  Osteoarthritis and Cartilage 2015 (in press) (DOI: 10.1016/j.joca.2015.09.006).
  • Maerz T., Kurdziel M.D., Davidson A.A., Baker K.C.,  Anderson K., Matthew H.W.T.  Biomechanical Characterization of a Model of Noninvasive, Traumatic Anterior Cruciate Ligament Injury in the Rat.  Annals of Biomedical Engineering  2015 43(10): 2467-76 (DOI: 10.1007/s10439-015-1292-9).
  • Tiruvannamalai-Annamalai R., Armant D.R., Matthew H.W.T.  A Glycosaminoglycan Based, Modular Tissue Scaffold System for Rapid Assembly of Perfusable, High Cell Density, Engineered Tissues PLOS ONE 2014, 9 (1): e84287 (DOI:10.1371/journal.pone.0084287).
  • Ereifej E., Matthew H.W.T., Newaz G., Mukhopadhyay A., Auner G., Salakhutdinov I., VandeVord, P.J. Nanopatterning Effects on Astrocyte Reactivity.  Journal of Biomedical Materials Research, Part A  2013, 101A: (6) 1743–1757 (DOI:10.1002/jbm.a.34480).
  • Albanna, M.Z., Blowytsky, O., Bou-Akl T., Walters H.L., Matthew H.W.T.  Chitosan Fibers with Improved Biocompatible and Mechanical Properties for Tissue Engineering Applications.  Journal of the Mechanical Behaviour of Biomedical Materials  2013, 20: 217–226 (DOI:10.1016/j.jmbbm.2012.09.012).
  • Albanna, M.Z., Bou-Akl T., Walters H.L., Matthew H.W.T.  Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers.  Journal of the Mechanical Behaviour of Biomedical Materials  2012, 5(1): 171-180 (DOI: 10.1016/j.jmbbm.2011.08.021).
  • Kishore V., Eliason J.F., Matthew H.W.T.  Covalently Immobilized Glycosaminoglycans Enhance Megakaryocyte Progenitor Expansion and Platelet Release.  Journal of Biomedical Materials Research Part A  2011 96A(4): 682–692 (DOI: 10.1002/jbm.a.33024).
  • Uygun K., Uygun B.E.; Matthew H.W.T., Huang Y.  Optimization-Based Metabolic Control Analysis.  Biotechnology Progress 2010, 26(6): 1567–1579 (DOI: 10.1002/btpr.482).
  • Sosne G., Qiu P., Kurpakus-Wheater M., Matthew H.  Thymosin beta 4 and Corneal Wound Healing: Visions of the Future.  Annals of the New York Academy of Sciences  2010, 1194: 190-198. (DOI:10.1111/j.1749-6632.2010.05472.x).
  • Uygun B.E.; Bou-Akl, T., Albanna, M.Z. Matthew, H.W.T.  Membrane Thickness is an Important Variable in Membrane Scaffolds: Influence of Chitosan Membrane Structure on the Behavior of Cells.  Acta Biomaterialia 2010, 6(6): 2126-2131. (DOI:10.1016/j.actbio.2009.11.018). 
  • Uygun B., Stojsih S.E., Matthew H.W.T.  Immobilized Glycosaminoglycans Influence Proliferation and Differentiation of Mesenchymal Stem Cells.  Tissue Engineering 2009, Part A. 15: 3499-3512. (DOI:10.1089/ten.tea.2008.0405).
  • Aggarwal, D., Matthew, H.W.T.  Branched Chitosans: Effects of Branching on Degradation, Protein Adsorption and Cell Growth Properties.  Acta Biomaterialia 2009, 5: 1575–1581  (DOI:10.1016/j.actbio.2009.01.003). 
  • Yu H., Vandevord P.J., Gong W., Wu B., Song Z., Matthew H.W., Wooley P.H., and Yang S.Y. Improved Tissue-Engineered Bone Regeneration by Endothelial Cell Mediated Vascularization. Biomaterials  2009, 30(4): 508-517 (DOI: 10.1016/j.biomaterials.2008.09.047). 
  • Patel M., Vandevord P., Matthew H., DeSilva S., Wu B., Wooley P.  Functional Gait Evaluation of Collagen Chitosan Nerve Guides for Sciatic Nerve Repair.  Tissue Engineering Part C, Methods 2008, 14(4): 365-370 (DOI:10.1089/ten.tec.2008.0166).
  • Yu H., Matthew H.W.T., Wooley P.H., Yang S.Y.,  Effect of Porosity and Pore Size on Microstructures and Mechanical Properties of Poly-Epsilon-Caprolactone-Hydroxyapatite Composites.    , Applied Biomaterials, 2008, 86B(2): 541-547 (DOI: 10.1002/jbm.b.31054).
  • Salakhutdinov I, VanderVord P, Palyvoda O, Matthew H.W.T., Tatagiri G, Handa H, Mao ., Auner G, and Newaz G.  Fibronectin Adsorption to Nanopatterned Silicon Surfaces.  Journal of Nanomaterials  2008, Article ID 543170, 5 pages, (DOI: 10.1155/2008/543170).
  • Patel M., VandeVord P.J., Matthew H.W.T., De Silva S., Wu B., and Wooley P.H.  Chitosan Blended Collagen Nerve Guides: A Histomorphometric Study.  Journal of Biomaterials Applications  2008, 23:101-121 (DOI: 10.1177/0885328207084521).
  • Cho C.H., Eliason J.F.,  Matthew H.W.T.  Application of Porous Glycosaminoglycan-Based Scaffolds for Expansion of Human Cord Blood Stem Cells in Perfusion Culture.  Journal of Biomedical Materials Research, Part A,  2008, 86: 1, p98-107 (DOI: 10.1002/jbm.a.31614).
  • Sullivan J.P., Gordon J.E., Bou-Akl, T., Matthew H.W.T. and Palmer A.F.  Enhanced Oxygen Delivery to Primary Hepatocytes within a Hollow Fiber Bioreactor Facilitated via Hemoglobin-Based Oxygen Carriers.  Artificial Cells, Blood Substitutes, and Biotechnology  2007, 35: 6, p585-606.
  • Aggarwal D., Matthew H.W.T.  Branched Chitosans: Effects of Branching on Rheological, and Mechanical Properties.  Journal of Biomedical Materials Research, Part A  2007, 82: p201-212. 
  • Uygun K., Matthew H.W.T., Huang Y.  Investigation of Metabolic Objectives in Cultured Hepatocytes  Biotechnology and Bioengineering  2006, 97: p622-637.
  • Patel M., VandeVord P.J., Matthew H.W.T., Wu B., De Silva S., Wooley P.H.  Video-Gait Analysis of Functional Recovery of Nerve Repaired with Chitosan Nerve Guides,  Tissue Engineering  2006, 12: p3189-3199. 
  • Uygun K., Matthew H.W.T., Huang Y.  DFBA-LQR: An Optimal Control Approach To Flux Balance Analysis.  Industrial & Engineering Chemistry Research  2006 45: p8554-8564.
  • Vlahos A.L., Crawford   R.S., Matthew H.W.T., Lucas C.E., Ledgerwood A.M., Effect of Albumin and Hespan on Rodent Hepatocyte Function after Hemorrhagic Shock and Sepsis.  Journal of Trauma 2005 59: p589-594. 
  • Calonder C., Matthew H.W.T., Van Tassel P.  Adsorbed Layers of Oriented Fibronectin: A Strategy to Control Cell-Surface Interactions.  Journal of Biomedical Materials Research, Part A 2005 75(2): p316-323. 
  • Matthew H.W.T. Cho C.H., Birla R.K., Khanna H.J.  Polysaccharides as Biomaterials.  In: Polymers in Medicine and Biology, Volume 2: Biodegradable Polymers.  Arshady R. Editor,  Citus Books, London, 2003, p35-68. 
  • Matthew H.W.T.  Chitosan as a Molecular Scaffold for Biomimetic Design of Glycopolymer Biomaterials.  In:  Biomimetic Materials and Design.  Dillow A., Lowman A. Editors,  Marcel Dekker, Inc. New York, 2002, p311-334. 
  • Lin, V.S.; Matthew, H.W.T.  Microencapsulation of Cells Within Chitosan-Glycosaminoglycan Ionic Complexes.  In: Methods of Tissue Engineering.  Atala A., Lanza R. Editors, Academic Press, San Diego, 2002, 815-823. 
  • Chaikof E.L., Matthew H.W.T., Kohn J., Mikos A.G., Prestwich G.D., Yip C.M.  Bioscaffolds for Tissue Repair: Breakout Session Summary.  Annals of the New York Academy of Sciences 2002, 961: p112-113. 
  • Prestwich G.D. and Matthew H.W.T.  Hybrid, Composite and Complex Biomaterials.  Annals of the New York Academy of Sciences 2002, 961: p106-108. 
  • Chaikof E.L., Matthew H.W.T., Kohn J., Mikos A.G., Prestwich G.D., Yip C.M.  Biomaterials and Scaffolds in Reparative Medicine.  Annals of the New York Academy of Sciences 2002, 961: p96-105. 
  • VandeVord PJ, Matthew HWT, DeSilva SP, Mayton L, Wu B, Wooley PH,  Evaluation of the Biocompatibility of Chitosan in Mice.  Journal of Biomedical Materials Research 2002, 59: 585-590. 
  • Matthew H.W.T.  Polymers for Tissue Engineering Scaffolds.  In: Polymeric Biomaterials, 2nd Edition.  Dumitriu S. Editor, Marcel Dekker Inc, New York, 2002, p167-186. 
  • Vlahos AL, Matthew HWT, Yu P, Lucas CE, Ledgerwood AM,  Effects of physiologic Albumin and Hespan on Hepatocytes In Vitro. Journal of Trauma 2000, 48(6): 1075-1080. 
  • Chupa, J.M., Foster, A.M., Sumner, S., Madihally, S.V., Matthew, H.W.T.,  Vascular Cell Responses to Polysaccharide Materials:  In Vitro and In Vivo Evaluations.  Biomaterials 2000, 21(22): 2315-2322. 
  • Suh, J.K., Matthew, H.W.T.,  Application of Chitosan-Based Biomaterials in Cartilage Tissue Engineering:  A Review.  Biomaterials 2000, 21: 2589-2598. 
  • Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larsen A, Matthew HWT, Evans CH, Fu FH, Suh JK,  GAG-Augmented Polysaccharide Hydrogel: A Novel Biocompatible and Biodegradable Material to Support Chondrogenesis.  Journal of Biomedical Materials Research 2000 49(4):534-541. 
  • Madihally SV, Flake AW, Matthew HWT,  Maintenance of CD34 Expression During Proliferation of CD34+ Cord Blood Cells on Glycosaminoglycan Surfaces.  Stem Cells  1999 17: 295-305 (DOI: 10.1002/stem.170295). 
  • Madihally, S.V.; Matthew, H.W.T.  Porous Chitosan Scaffolds For Tissue Engineering.  Biomaterials 1999 20: 1133-1142. 
  • Surapaneni, S., Pryor, T.; Klein, M.D.; Matthew, H.W.T.  Rapid Hepatocyte Spheroid Formation: Optimization and Long-Term Function in Perfused Microcapsules.  ASAIO Journal 1997 43(5): M848-M853. 
  • Stefanovich, P.; Matthew, H.W.T.; Toner, M.; Yarmush, M.L.; Tompkins, R.G.  Extracorporeal Plasma Perfusion of Cultured Hepatocytes: Effect of Intermittent Perfusion on Hepatocyte Function and Morphology.  Journal of Surgical Research 1996, 66: 57-63. 
  • Matthew, H.W.T.; Sternberg, J.; Stefanovich, P.; Morgan, J.R.; Toner, M.; Tompkins, R.G.; Yarmush, M.L.  Effects of Plasma Exposure on Cultured Hepatocytes:  Implications for Bioartificial Liver Support.  Biotechnology and Bioengineering 1996, 51: 100-111. 
  • Rotem, A.; Matthew, H.W.T.; Hsaio, P.H.; Toner, M.; Tompkins, R.G.; Yarmush, M.L.  The Activity of Cytochrome P-450 IA1 in Stable Cultured Rat Hepatocytes. Toxicology In Vitro 1995, 9: 139-149. 
  • Matthew, H.W.T.; Salley, S.O.; Peterson, W.D.; Klein, M.D., Complex Coacervate Microcapsules for Mammalian Cell Culture and Artificial Organ Development. Biotechnology Progress 1993, 9: 510-519. 
  • Matthew, H.W.T.; Basu, S.; Salley, S.O.; Peterson, W.D.; Klein, M.D.  Performance of Plasma Perfused, Microencapsulated Hepatocytes: Prospects for Extracorporeal Support.  Journal of Pediatric Surgery 1993, 28: 1423-1427. 
  • Matthew, H.W.T.; Salley, S.O.; Peterson, W.D.; Deshmukh, D.R.; Mukhopadhyay, A.; Klein, M.D.  Microencapsulated Hepatocytes: Prospects for Extracorporeal Liver Support.  Transactions of the American Society for Artificial Internal Organs 1991, 37: M328-M330. 

Professional Affiliations

  • American Institute of Chemical Engineers
  • Biomedical Engineering Society
  • Society for Biomaterials
  • Tissue Engineering & Regenerative Medicine International Society
  • American Chemical Society

Awards and Honors

  • 2011, Fellow of the American Institute of Medical and Biological Engineering.
  • 1996-2000, CAREER Award, National Science Foundation.
  • 1992-1994, John Burke Postdoctorall Fellowship, Harvard University.


Postdoctoral, Harvard Medical School & Massachusetts General Hospital, 1994.
Ph.D., Wayne State University, Chemical Engineering, 1992.
M.S., Wayne State University, Chemical Engineering, 1987.
B.S., University of the West Indies, Chemical Engineering, 1984.

Courses taught by Howard Matthew

Winter Term 2024

Fall Term 2023

Winter Term 2023

Fall Term 2022

Winter Term 2022

← Return to listing